The main achievement of this paper is the finding and proof of Central Limit Theorem(CLT,see Theorem 12)under the framework of sublinear expectation.Roughly speaking under some reasonable assumption,the random sequenc...The main achievement of this paper is the finding and proof of Central Limit Theorem(CLT,see Theorem 12)under the framework of sublinear expectation.Roughly speaking under some reasonable assumption,the random sequence{1/√n(X1+···+Xn)}i∞=1 converges in law to a nonlinear normal distribution,called G-normal distribution,where{Xi}i∞=1 is an i.i.d.sequence under the sublinear expectation.It’s known that the framework of sublinear expectation provides a important role in situations that the probability measure itself has non-negligible uncertainties.Under such situation,this new CLT plays a similar role as the one of classical CLT.The classical CLT can be also directly obtained from this new CLT,since a linear expectation is a special case of sublinear expectations.A deep regularity estimate of 2nd order fully nonlinear parabolic PDE is applied to the proof of the CLT.This paper is originally exhibited in arXiv.(math.PR/0702358v1).展开更多
文摘The main achievement of this paper is the finding and proof of Central Limit Theorem(CLT,see Theorem 12)under the framework of sublinear expectation.Roughly speaking under some reasonable assumption,the random sequence{1/√n(X1+···+Xn)}i∞=1 converges in law to a nonlinear normal distribution,called G-normal distribution,where{Xi}i∞=1 is an i.i.d.sequence under the sublinear expectation.It’s known that the framework of sublinear expectation provides a important role in situations that the probability measure itself has non-negligible uncertainties.Under such situation,this new CLT plays a similar role as the one of classical CLT.The classical CLT can be also directly obtained from this new CLT,since a linear expectation is a special case of sublinear expectations.A deep regularity estimate of 2nd order fully nonlinear parabolic PDE is applied to the proof of the CLT.This paper is originally exhibited in arXiv.(math.PR/0702358v1).