We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the informat...We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the information available to an agent(an individual,a firm,or even a market)is the trajectory ofX before t.Thus at time T,the random value of Y(ω) will become known to this agent.The question is:howwill this agent evaluate Y at the time t?We will introduce an evaluation operator ε_t[Y] to define the value of Y given by this agent at time t.Thisoperator ε_t[·] assigns an (X_s)0(?)s(?)T-dependent random variable Y to an (X_s)0(?)s(?)t-dependent random variableε_t[Y].We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coefficient b and diffusion coefficient σ containing an unknown parameter θ=θ_t.We then consider theso called super evaluation when the agent is a seller of the asset Y.We will prove that such super evaluation is afiltration consistent nonlinear expectation.In some typical situations,we will prove that a filtration consistentnonlinear evaluation dominated by this super evaluation is a g-evaluation.We also consider the correspondingnonlinear Markovian situation.展开更多
It was shown in Xia that for incomplete markets with continuous assets' price processes and for complete markets the mean-variance portfolio selection can be viewed as expected utility maximization with non-negative ...It was shown in Xia that for incomplete markets with continuous assets' price processes and for complete markets the mean-variance portfolio selection can be viewed as expected utility maximization with non-negative marginal utility. In this paper we show that for discrete time incomplete markets this result is not true.展开更多
The authors get a maximum principle for one kind of stochastic optimization problem motivated by dynamic measure of risk. The dynamic measure of risk to an investor in a financial market can be studied in our framewor...The authors get a maximum principle for one kind of stochastic optimization problem motivated by dynamic measure of risk. The dynamic measure of risk to an investor in a financial market can be studied in our framework where the wealth equation may have nonlinear coefficients.展开更多
基金Supported in part by National Natural Science Foundation of China Grant (No.10131040).The author also thanks the referee's constructive suggestions.
文摘We will study the following problem.Let X_t,t∈[0,T],be an R^d-valued process defined on atime interval t∈[0,T].Let Y be a random value depending on the trajectory of X.Assume that,at each fixedtime t≤T,the information available to an agent(an individual,a firm,or even a market)is the trajectory ofX before t.Thus at time T,the random value of Y(ω) will become known to this agent.The question is:howwill this agent evaluate Y at the time t?We will introduce an evaluation operator ε_t[Y] to define the value of Y given by this agent at time t.Thisoperator ε_t[·] assigns an (X_s)0(?)s(?)T-dependent random variable Y to an (X_s)0(?)s(?)t-dependent random variableε_t[Y].We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coefficient b and diffusion coefficient σ containing an unknown parameter θ=θ_t.We then consider theso called super evaluation when the agent is a seller of the asset Y.We will prove that such super evaluation is afiltration consistent nonlinear expectation.In some typical situations,we will prove that a filtration consistentnonlinear evaluation dominated by this super evaluation is a g-evaluation.We also consider the correspondingnonlinear Markovian situation.
文摘It was shown in Xia that for incomplete markets with continuous assets' price processes and for complete markets the mean-variance portfolio selection can be viewed as expected utility maximization with non-negative marginal utility. In this paper we show that for discrete time incomplete markets this result is not true.
基金the National Basic Research Program of China (973 Program, No. 2007CB814900)the Natural Science Foundation of China (10671112)+1 种基金Shandong Province (Z2006A01)the New Century Excellent Young Teachers Program of Education Ministry of China
文摘The authors get a maximum principle for one kind of stochastic optimization problem motivated by dynamic measure of risk. The dynamic measure of risk to an investor in a financial market can be studied in our framework where the wealth equation may have nonlinear coefficients.