The mean-value theorem of Reissner’s plate is first presented and proved. Letting Cs and Cn approach infinite, the mean-value theorem of elastic thin plate can be obtained.
Based on the isomorphism between the space of star-shaped sets and the space of continuous positively homogeneous real-valued functions, the star-shaped differential of a directionally differentiable function is defin...Based on the isomorphism between the space of star-shaped sets and the space of continuous positively homogeneous real-valued functions, the star-shaped differential of a directionally differentiable function is defined. Formulas for star-shaped differential of a pointwise maximum and a pointwise minimum of a finite number of directionally differentiable functions, and a composite of two directionaUy differentiable functions are derived. Furthermore, the mean-value theorem for a directionaUy differentiable function is demonstrated.展开更多
文摘The mean-value theorem of Reissner’s plate is first presented and proved. Letting Cs and Cn approach infinite, the mean-value theorem of elastic thin plate can be obtained.
文摘Based on the isomorphism between the space of star-shaped sets and the space of continuous positively homogeneous real-valued functions, the star-shaped differential of a directionally differentiable function is defined. Formulas for star-shaped differential of a pointwise maximum and a pointwise minimum of a finite number of directionally differentiable functions, and a composite of two directionaUy differentiable functions are derived. Furthermore, the mean-value theorem for a directionaUy differentiable function is demonstrated.