期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于极大极小距离密度的多目标微分进化算法 被引量:29
1
作者 张利彪 周春光 +1 位作者 马铭 孙彩堂 《计算机研究与发展》 EI CSCD 北大核心 2007年第1期177-184,共8页
微分进化(differential evolution)是一种新的简单而有效的直接全局优化算法,并在许多领域得到了成功应用.提出了基于极大极小距离密度的多目标微分进化算法.新算法定义了极大极小距离密度,给出了基于极大极小距离密度的Pareto候选解集... 微分进化(differential evolution)是一种新的简单而有效的直接全局优化算法,并在许多领域得到了成功应用.提出了基于极大极小距离密度的多目标微分进化算法.新算法定义了极大极小距离密度,给出了基于极大极小距离密度的Pareto候选解集的维护方法,保证了非劣解集的多样性.并根据个体间的Pareto支配关系和极大极小距离密度改进了微分进化的选择操作,保证了算法的收敛性,实现了利用微分进化算法求解多目标优化问题.通过对5个ZDT测试函数、两个高维测试函数的实验及与其他多目标进化算法的对比和分析,验证了新算法的可行性和有效性. 展开更多
关键词 微分进化 极大极小距离密度 多目标优化问题 多目标进化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部