Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the O...Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the OMP algorithm under the restricted isometry property (RIP) is presented. It is shown that 5K+V/KOK,1 〈 1 is sufficient for the OMP algorithm to recover exactly the support of arbitrary /(-sparse signal if its nonzero components are large enough for both 12 bounded and lz~ bounded noises.展开更多
Iterative hard thresholding(IHT)and compressive sampling matching pursuit(CoSaMP)are two mainstream compressed sensing algorithms using the hard thresholding operator.The guaranteed performance of the two algorithms f...Iterative hard thresholding(IHT)and compressive sampling matching pursuit(CoSaMP)are two mainstream compressed sensing algorithms using the hard thresholding operator.The guaranteed performance of the two algorithms for signal recovery was mainly analyzed in terms of the restricted isometry property(RIP)of sensing matrices.At present,the best known bound using the RIP of order 3k for guaranteed performance of IHT(with the unit stepsize)isδ3k<1/√3≈0.5774,and the bound for CoSaMP using the RIP of order 4k isδ4k<0.4782.A fundamental question in this area is whether such theoretical results can be further improved.The purpose of this paper is to affirmatively answer this question and to rigorously show that the abovementioned RIP bound for guaranteed performance of IHT can be significantly improved toδ3k<(√5−1)/2≈0.618,and the bound for CoSaMP can be improved toδ4k<0.5102.展开更多
Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance...Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance of OMMP under the restricted isometry property(RIP)is presented.We demonstrate that OMMP can exactly recover any K-sparse signal from fewer observations y=φx,provided that the sampling matrixφsatisfiesδKN-N+1+√K/NθKN-N+1,N〈1.Moreover,the performance of OMMP for support recovery from noisy observations is also discussed.It is shown that,for l_2 bounded and l_∞bounded noisy cases,OMMP can recover the true support of any K-sparse signal under conditions on the restricted isometry property of the sampling matrixφand the minimum magnitude of the nonzero components of the signal.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11271060,U0935004,U1135003,11071031,11290143 and 11101096)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,National Engineering Research Center of Digital Lifethe Guangdong Natural Science Foundation(Grant No.S2012010010376)
文摘Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the OMP algorithm under the restricted isometry property (RIP) is presented. It is shown that 5K+V/KOK,1 〈 1 is sufficient for the OMP algorithm to recover exactly the support of arbitrary /(-sparse signal if its nonzero components are large enough for both 12 bounded and lz~ bounded noises.
基金supported by National Natural Science Foundation of China(Grant Nos.12071307 and 61571384).
文摘Iterative hard thresholding(IHT)and compressive sampling matching pursuit(CoSaMP)are two mainstream compressed sensing algorithms using the hard thresholding operator.The guaranteed performance of the two algorithms for signal recovery was mainly analyzed in terms of the restricted isometry property(RIP)of sensing matrices.At present,the best known bound using the RIP of order 3k for guaranteed performance of IHT(with the unit stepsize)isδ3k<1/√3≈0.5774,and the bound for CoSaMP using the RIP of order 4k isδ4k<0.4782.A fundamental question in this area is whether such theoretical results can be further improved.The purpose of this paper is to affirmatively answer this question and to rigorously show that the abovementioned RIP bound for guaranteed performance of IHT can be significantly improved toδ3k<(√5−1)/2≈0.618,and the bound for CoSaMP can be improved toδ4k<0.5102.
基金supported by the Science Foundation of Guangdong University of Finance & Economics(Grant No.13GJPY11002)National Natural Science Foundation of China(Grant Nos.11071031,11271060,11290143,U0935004 and U1135003)+1 种基金the Guangdong Natural Science Foundation(Grant No.S2012010010376)the Guangdong University and Colleges Technology Innovation Projects(Grant No.2012KJCX0048)
文摘Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance of OMMP under the restricted isometry property(RIP)is presented.We demonstrate that OMMP can exactly recover any K-sparse signal from fewer observations y=φx,provided that the sampling matrixφsatisfiesδKN-N+1+√K/NθKN-N+1,N〈1.Moreover,the performance of OMMP for support recovery from noisy observations is also discussed.It is shown that,for l_2 bounded and l_∞bounded noisy cases,OMMP can recover the true support of any K-sparse signal under conditions on the restricted isometry property of the sampling matrixφand the minimum magnitude of the nonzero components of the signal.