两个图G和H的匹配多项式相等,则称它们匹配等价.用δ(G)表示图G的所有不同构的匹配等价图的个数.计算了一些路的并图的匹配等价图的个数.首先将整数m(≥2)按它所含的最大奇因数分成3-系和2k(k=1.2,…)-系,再按它所含2的方幂分为级.设A...两个图G和H的匹配多项式相等,则称它们匹配等价.用δ(G)表示图G的所有不同构的匹配等价图的个数.计算了一些路的并图的匹配等价图的个数.首先将整数m(≥2)按它所含的最大奇因数分成3-系和2k(k=1.2,…)-系,再按它所含2的方幂分为级.设A是不小于2的整数组成的可重集,B_i(i=1,2,…,t)是同系整数构成的可重集,且A=B_1∪B_2∪…∪B_t,则δ(■P_i)=■δ(■P_i),若x∈B_i,y∈B_j(i≠j),则x与y是互不相同系的整数.设B={m_1^(k_1),m_2^(k_2),…,m_n^(k_n)}是同系整数构成的可重集,其中m_i(≥2)是第i级的,有k_i(≥0)个,则n =1,δ(■P_i)=1;n≥2,δ(■P_i)=sum from i_m-0 to k_n sum from i_(m-1)-0 to k_(n-1)+i_m…sum from i_2-0 to k_2+i_3 1.作为推论,计算了路并补图的匹配等价图的个数.展开更多
For two graphs <em>G</em> and<em> H</em>, if <em>G</em> and <em>H</em> have the same matching polynomial, then <em>G</em> and <em>H</em> are said...For two graphs <em>G</em> and<em> H</em>, if <em>G</em> and <em>H</em> have the same matching polynomial, then <em>G</em> and <em>H</em> are said to be matching equivalent. We denote by <em>δ </em>(<em>G</em>), the number of the matching equivalent graphs of <em>G</em>. In this paper, we give <em>δ </em>(<em>sK</em><sub>1</sub> ∪ <em>t</em><sub>1</sub><em>C</em><sub>9</sub> ∪ <em>t</em><sub>2</sub><em>C</em><sub>15</sub>), which is a generation of the results of in <a href="#ref1">[1]</a>.展开更多
文摘两个图G和H的匹配多项式相等,则称它们匹配等价.用δ(G)表示图G的所有不同构的匹配等价图的个数.计算了一些路的并图的匹配等价图的个数.首先将整数m(≥2)按它所含的最大奇因数分成3-系和2k(k=1.2,…)-系,再按它所含2的方幂分为级.设A是不小于2的整数组成的可重集,B_i(i=1,2,…,t)是同系整数构成的可重集,且A=B_1∪B_2∪…∪B_t,则δ(■P_i)=■δ(■P_i),若x∈B_i,y∈B_j(i≠j),则x与y是互不相同系的整数.设B={m_1^(k_1),m_2^(k_2),…,m_n^(k_n)}是同系整数构成的可重集,其中m_i(≥2)是第i级的,有k_i(≥0)个,则n =1,δ(■P_i)=1;n≥2,δ(■P_i)=sum from i_m-0 to k_n sum from i_(m-1)-0 to k_(n-1)+i_m…sum from i_2-0 to k_2+i_3 1.作为推论,计算了路并补图的匹配等价图的个数.
文摘For two graphs <em>G</em> and<em> H</em>, if <em>G</em> and <em>H</em> have the same matching polynomial, then <em>G</em> and <em>H</em> are said to be matching equivalent. We denote by <em>δ </em>(<em>G</em>), the number of the matching equivalent graphs of <em>G</em>. In this paper, we give <em>δ </em>(<em>sK</em><sub>1</sub> ∪ <em>t</em><sub>1</sub><em>C</em><sub>9</sub> ∪ <em>t</em><sub>2</sub><em>C</em><sub>15</sub>), which is a generation of the results of in <a href="#ref1">[1]</a>.