In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem i...In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.展开更多
In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)con...In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)configuration,including a large number of reflecting elements,where the transmitters and receivers are only equipped with a single antenna.Our objective is to analytically obtain the achievable ergodic rate,outage probability,and bit error rate(BER)of the system.Furthermore,to maximize the system’s signal-to-noise ratio(SNR),we design the phase shift of each reflecting element and derive the optimal reflection phase of the IRS based on the channel state information(CSI).We also derive the exact expression of the SNR probability density function(p.d.f.)and show that it follows a non-central Chi-square distribution.Using the p.d.f.,we then derive the theoretical results of the achievable rate,outage probability,and BER.The accuracy of the obtained theoretical results is also verified through numerical simulation.Itwas shown that the achievable rate,outage probability,and BER could be improved by increasing the number of reflecting elements and choosing an appropriate SNR regime.Furthermore,we also find that the IRS-assisted communication system achieves better performance than the existing end-to-end wireless communication.展开更多
The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation ...The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.展开更多
This paper analyses of the outage probability and the achievable rate of massive multi-input-multi-output(MIMO) systems, in which the base station(BS) is equipped with digital-to-analog-converters(DACs) of mixed-level...This paper analyses of the outage probability and the achievable rate of massive multi-input-multi-output(MIMO) systems, in which the base station(BS) is equipped with digital-to-analog-converters(DACs) of mixed-level resolution. And the matched-filter(MF) precoding is used on the BS. Closedform expressions are derived by the distribution of user-interference power and other statistical properties in the signal-to-interference-plus-noise-ratio. Then, the combination of mixed-DACs resolution profile is chosen about outage probability and achievable rate with the BS energy consumption. And the resolution configurations between the outage probability and the achievable rate and the BS energy consumption are given. Meanwhile, Effects of related parameters and channel errors are analysed about outage probability and achievable rate. The numerical results show that the correctness of the formula derivations. As the number of users increases the system's achievable rate increases and the outage probability decreases. The selected resolution configuration system has better comprehensive performance.展开更多
基金supported by the Fundamental Research Funds for the Central Universities of NUAA(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China(No.BK20181289).
文摘In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.
基金supported in part by the Joint Research Fund for Guangzhou University and Hong Kong University of Science and Technology under Grant No.YH202203the Guangzhou Basic Research Program Municipal School(College)Joint Funding Project,the Research Project of Guizhou University for Talent Introduction under Grant No.[2020]61+7 种基金the Cultivation Project of Guizhou University under Grant No.[2019]56the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education under Grant No.GZUAMT2021KF[01]the National Natural Science Foundation of China under Grant Nos.51978089 and 62171119the Key R&D Plan of Sichuan Science and Technology Department under Grant No.22ZDYF2726the Chengdu Normal University Scientific Research and Innovation Team under Grant Nos.CSCXTD2020B09,ZZBS201907,CS21ZC01the Open Project of Intelligent Manufacturing Industry Technology Research Institute under Grant No.ZNZZ2208the National Key Research and Development Program of China under Grant No.2020YFB1807201Key research and development plan of Jiangsu Province under Grant No.BE2021013-3.
文摘In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)configuration,including a large number of reflecting elements,where the transmitters and receivers are only equipped with a single antenna.Our objective is to analytically obtain the achievable ergodic rate,outage probability,and bit error rate(BER)of the system.Furthermore,to maximize the system’s signal-to-noise ratio(SNR),we design the phase shift of each reflecting element and derive the optimal reflection phase of the IRS based on the channel state information(CSI).We also derive the exact expression of the SNR probability density function(p.d.f.)and show that it follows a non-central Chi-square distribution.Using the p.d.f.,we then derive the theoretical results of the achievable rate,outage probability,and BER.The accuracy of the obtained theoretical results is also verified through numerical simulation.Itwas shown that the achievable rate,outage probability,and BER could be improved by increasing the number of reflecting elements and choosing an appropriate SNR regime.Furthermore,we also find that the IRS-assisted communication system achieves better performance than the existing end-to-end wireless communication.
基金supported in part by the National Natural Science Foundation of China (No. 61971220)the Fundamental Research Funds for the Central Universities of Nanjing University of Aeronautics and Astronautics(NUAA)(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China (No. BK20181289)。
文摘The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.
基金supported by the National Natural Science Foundation of China(No.61961018)the Jiangxi Province Foundation for Distinguished Young Scholar(No.20192BCB23013)the Jiangxi Province Natural Science Foundation of China(20192ACB21003)。
文摘This paper analyses of the outage probability and the achievable rate of massive multi-input-multi-output(MIMO) systems, in which the base station(BS) is equipped with digital-to-analog-converters(DACs) of mixed-level resolution. And the matched-filter(MF) precoding is used on the BS. Closedform expressions are derived by the distribution of user-interference power and other statistical properties in the signal-to-interference-plus-noise-ratio. Then, the combination of mixed-DACs resolution profile is chosen about outage probability and achievable rate with the BS energy consumption. And the resolution configurations between the outage probability and the achievable rate and the BS energy consumption are given. Meanwhile, Effects of related parameters and channel errors are analysed about outage probability and achievable rate. The numerical results show that the correctness of the formula derivations. As the number of users increases the system's achievable rate increases and the outage probability decreases. The selected resolution configuration system has better comprehensive performance.