The quantization of the forced harmonic oscillator is studied with the quantum variable (<em>x</em>, <span style="white-space:nowrap;"><em><sub>v</sub><sup style="...The quantization of the forced harmonic oscillator is studied with the quantum variable (<em>x</em>, <span style="white-space:nowrap;"><em><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em></span>), with the commutation relation <img src="Edit_28f5b839-7de4-41e5-9ed8-69dc1bf72c2c.bmp" alt="" />, and using a Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span></span>dinger’s like equation on these variable, and associating a linear operator to a constant of motion <em>K</em> (<em>x, v, t</em>) of the classical system, The comparison with the quantization in the space (<em>x, p</em>) is done with the usual Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span></span>dinger’s equation for the Hamiltonian <em>H</em><span style="white-space:normal;">(</span><em style="white-space:normal;">x, p, t</em><span style="white-space:normal;">)</span>, and with the commutation relation <img src="Edit_cca7e318-5b35-4c55-8f09-6089970ce9a2.bmp" alt="" />. It is found that for the non-resonant case, both forms of quantization bring about the same result. However, for the resonant case, both forms of quantization are different, and the probability for the system to be in the exited state for the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization has fewer oscillations than the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>p</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization, the average energy of the system is higher in (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>p</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization than on the (<em style="white-space:normal;">x</em><span style="white-space:normal;">,展开更多
文摘The quantization of the forced harmonic oscillator is studied with the quantum variable (<em>x</em>, <span style="white-space:nowrap;"><em><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em></span>), with the commutation relation <img src="Edit_28f5b839-7de4-41e5-9ed8-69dc1bf72c2c.bmp" alt="" />, and using a Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span></span>dinger’s like equation on these variable, and associating a linear operator to a constant of motion <em>K</em> (<em>x, v, t</em>) of the classical system, The comparison with the quantization in the space (<em>x, p</em>) is done with the usual Schr<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span></span>dinger’s equation for the Hamiltonian <em>H</em><span style="white-space:normal;">(</span><em style="white-space:normal;">x, p, t</em><span style="white-space:normal;">)</span>, and with the commutation relation <img src="Edit_cca7e318-5b35-4c55-8f09-6089970ce9a2.bmp" alt="" />. It is found that for the non-resonant case, both forms of quantization bring about the same result. However, for the resonant case, both forms of quantization are different, and the probability for the system to be in the exited state for the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em><sub>v</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization has fewer oscillations than the (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>p</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization, the average energy of the system is higher in (<em style="white-space:normal;">x</em><span style="white-space:normal;">, </span><em style="white-space:normal;"><sub>p</sub><sup style="margin-left:-8px;">∧</sup></em>) quantization than on the (<em style="white-space:normal;">x</em><span style="white-space:normal;">,