The quantum state transmission through the medium of high-dimensional many-particle system (boson or spinless fermion) is generally studied with a symmetry analysis. We discover that, if the spectrum of a Hamiltonia...The quantum state transmission through the medium of high-dimensional many-particle system (boson or spinless fermion) is generally studied with a symmetry analysis. We discover that, if the spectrum of a Hamiltonian matches the symmetry of a fermion or boson system in a certain fashion, a perfect quantum state transfer can be implemented without any operation on the medium with pre-engineered nearest neighbor (NN). We also study a simple but realistic near half-filled tight-bindlng fermion system wlth uniform NN hopping integral. We show that an arbitrary many-particle state near the fermi surface can be perfectly transferred to its translational counterpart.展开更多
Using the density functional method B3LYP with relativistic effective core potential (RECP) for Pu atom, the low-lying excited states (^4Σ^+, ^6Σ^+, ^8Σ^+) for three structures of PuOH molecule were optimize...Using the density functional method B3LYP with relativistic effective core potential (RECP) for Pu atom, the low-lying excited states (^4Σ^+, ^6Σ^+, ^8Σ^+) for three structures of PuOH molecule were optimized. The results show that the ground state is X^6Σ^+ of the linear Pu-O-H (C∞v), its corresponding equilibrium geometry and dissociation energy are RPu-O = 0.20595 nm, RO-H=0.09581 nm and -8.68 eV, respectively. At the same time, two other metastable structures [PuOH (Cs) and H-Pu-O (C∞v)] were found. The analytical potential energy function has also been derived for whole range using the many-body expansion method. This potential energy function represents the considerable topographical features of PuOH molecule in detail, which is adequately accurate in the whole potential surface and can be used for the molecular reaction dynamics research.展开更多
A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This appr...A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This approach gives a natural numerical scheme to approximate the solution.The convergence of the approximation is proved and its asymptatic order obtained.展开更多
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
An irreducible tensor method based on M. O. theory for solving many-body Schrodinger equation of valence-electron system of metal complexes has been proposed. Electronic structures of several typical octahedral transi...An irreducible tensor method based on M. O. theory for solving many-body Schrodinger equation of valence-electron system of metal complexes has been proposed. Electronic structures of several typical octahedral transition metal complexes have been studied by means of this method. Calculated excitation energies agree with observed ones within several kcm-1.展开更多
本文利用多体格林函数理论,计算了石墨相g-CN的准粒子能带结构和光吸收谱.准粒子能带结构通过GW方法进行计算.考虑电子-空穴相互作用,通过求解Bethe-Salpeter方程获得了激发能和光吸收谱.计算的准粒子带隙为4.88 e V,极大地修正了密度...本文利用多体格林函数理论,计算了石墨相g-CN的准粒子能带结构和光吸收谱.准粒子能带结构通过GW方法进行计算.考虑电子-空穴相互作用,通过求解Bethe-Salpeter方程获得了激发能和光吸收谱.计算的准粒子带隙为4.88 e V,极大地修正了密度泛函理论的结果.光吸收谱在4.85 e V处有一个强烈的吸收峰,这与实验结果一致.该吸收峰对应的激子空间分布局域,激子束缚能达到2.32 e V.在低能量处有一些来源于?轨道的暗激子态,对光化学过程产生一定的影响.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90203018, 10474104, and 10447133, and the Knowledge Innovation Program (KIP) of the Chinese Academy of Sciences, the National Fundamental Research Program of China under Grant No. 2001CB309310
文摘The quantum state transmission through the medium of high-dimensional many-particle system (boson or spinless fermion) is generally studied with a symmetry analysis. We discover that, if the spectrum of a Hamiltonian matches the symmetry of a fermion or boson system in a certain fashion, a perfect quantum state transfer can be implemented without any operation on the medium with pre-engineered nearest neighbor (NN). We also study a simple but realistic near half-filled tight-bindlng fermion system wlth uniform NN hopping integral. We show that an arbitrary many-particle state near the fermi surface can be perfectly transferred to its translational counterpart.
文摘Using the density functional method B3LYP with relativistic effective core potential (RECP) for Pu atom, the low-lying excited states (^4Σ^+, ^6Σ^+, ^8Σ^+) for three structures of PuOH molecule were optimized. The results show that the ground state is X^6Σ^+ of the linear Pu-O-H (C∞v), its corresponding equilibrium geometry and dissociation energy are RPu-O = 0.20595 nm, RO-H=0.09581 nm and -8.68 eV, respectively. At the same time, two other metastable structures [PuOH (Cs) and H-Pu-O (C∞v)] were found. The analytical potential energy function has also been derived for whole range using the many-body expansion method. This potential energy function represents the considerable topographical features of PuOH molecule in detail, which is adequately accurate in the whole potential surface and can be used for the molecular reaction dynamics research.
文摘A fixed mesh variational formulation is used to establish existence and uniqueness of the solution of ordinary differential equations with (in finitely many) state-dependent in pulses on the right-hand side. This approach gives a natural numerical scheme to approximate the solution.The convergence of the approximation is proved and its asymptatic order obtained.
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
基金Project supported by the National Natural Science Foundation of China.
文摘An irreducible tensor method based on M. O. theory for solving many-body Schrodinger equation of valence-electron system of metal complexes has been proposed. Electronic structures of several typical octahedral transition metal complexes have been studied by means of this method. Calculated excitation energies agree with observed ones within several kcm-1.
文摘本文利用多体格林函数理论,计算了石墨相g-CN的准粒子能带结构和光吸收谱.准粒子能带结构通过GW方法进行计算.考虑电子-空穴相互作用,通过求解Bethe-Salpeter方程获得了激发能和光吸收谱.计算的准粒子带隙为4.88 e V,极大地修正了密度泛函理论的结果.光吸收谱在4.85 e V处有一个强烈的吸收峰,这与实验结果一致.该吸收峰对应的激子空间分布局域,激子束缚能达到2.32 e V.在低能量处有一些来源于?轨道的暗激子态,对光化学过程产生一定的影响.