Mineral deposits are unevenly distributed in the Earth's crust, which is closely related to the formation and evolution of the Earth. In the early history of the Earth, controlled by the gravitational contraction ...Mineral deposits are unevenly distributed in the Earth's crust, which is closely related to the formation and evolution of the Earth. In the early history of the Earth, controlled by the gravitational contraction and thermal expansion, lighter elements, such as radioactive, halogen-family, rare and rare earth elements and alkali metals, migrated upwards; whereas heavier elements, such as iron-family and platinum-family elements, base metals and noble metals, had a tendency of sinking to the Earth's core, so that the elements iron, nickel, gold and silver are mainly concentrated in the Earth's core. However, during the formation of the stratified structure of the Earth, the existence of temperature, pressure and viscosity differences inside and outside the Earth resulted in vertical material movement manifested mainly by cascaded evolution of mantle plumes in the Earth. The stratifications and vertical movement of the Earth were interdependent and constituted the motive force of the mantle-core movement. The cascaded evolution of mantle plumes opens the passageways for the migration of deep-seated ore-forming material, and thus elements such as gold and silver concentrated in the core and on the core-mantle boundary migrate as the gaseous state together with the hot material flow of mantle plumes against the gravitational force through the passageways to the lithosphere, then migrate as the mixed gas-liquid state to the near-surface level and finally are concentrated in favorable structural expansion zones, forming mineral deposits. This is possibly the important metallogenic mechanism for gold, silver, lead, zinc, copper and other many elements. Take for example the NE-plunging crown of the Fuping mantle-branch structure, the paper analyzes ductile-brittle shear zone-type gold fields (Weijiayu) at the core of the magmatic-metamorphic complex, principal detachment-type gold fields (Shangmingyu) and hanging-wall cover fissure-vein-type lead-zinc polymetallic ore fields (Lianbaling) and further briefly analyzes the 展开更多
The basin-range coupling relation is a leading subject of the modern geology. In geometry, relations of this type include couplings between stretched orogenic belt and down-faulted basin, compressional orogenic belt a...The basin-range coupling relation is a leading subject of the modern geology. In geometry, relations of this type include couplings between stretched orogenic belt and down-faulted basin, compressional orogenic belt and foreland basin, strike-slip orogenic belt and strike-slip basin and so on. Fault chains are the key for these couplings and there are typical examples for all these cases. The North China down-faulted basin is coupled west with the Taihang uplift, east with the Jiao-Liao Mountains, north with the Yanshan orogenic belt and south with the Dabie orogenic belt, that is to say, the central down-faulted basin and the surrounding orogenic belts bear a coupling relation within a uniform dynamistic system. Study shows that the central down-faulted basin and the North China mantle sub-plume structure have a close relation during their formation. Owing to intensive mantle sub-plume uplifting, the bottom of the lithosphere suffered from resistance, which caused the lithosphere of the eastern North China to be heated, thinned and fault-depressed. Meanwhile, mantle rocks that were detached outwards in the shape of mushroom was dissected by surrounding ductile shearing zones, which lead to decompression and unloading to generate hypomagmas, and a series of mantle-branch structures were formed around the down-faulted basin. There is an obvious comparability among these mantle branch structures (orogenic belts), and they have basin-range coupling relations with the central down-faulted basins.展开更多
Under the guidance of the theory of mantle-branch structure-associated metallogenesis and on the basis of the geological characteristics, analysis of the ore-forming and ore-controlling structures, the geochemical cha...Under the guidance of the theory of mantle-branch structure-associated metallogenesis and on the basis of the geological characteristics, analysis of the ore-forming and ore-controlling structures, the geochemical characteristics of metallogenesis, the source of ore-forming materials, changes in the physical and chemical conditions of metallogenesis, changes in the vertical width of ore veins, and changes in gold grade of the Shihu gold deposit, the mechanism of its metallogenesis was discussed and the rules of vertical variation of ore veins were summarized in this study. It is pointed out that the orebodies under exploitation at present time should be in the middle and upper portions of gold veins in the Shihu gold mining district. Particularly on the basis of the characteristics of mantle-branch structure-associated metallogenesis, it is indicated that metallogenesis is controlled mainly by such ore-forming conditions as temperature and pressure. Deep-seated ore-forming fluids are characterized mainly by injection and precipitation. So the vein bodies in the adjacent metallogenic structures are of obvious comparability, and there would be great prospects for ore search both at depth and in the periphery of the Shihu gold deposit. Therefore, ore prospecting should be strengthened both at depth and in the peripheries.展开更多
The Mujicun Cu (Mo) ore deposit at Laiyuan, Hebei Province, is a currently proven large-sized Cu (Mo) polymetallic ore deposit and it is located in the second-ordered fault depression basin of the ditachment belt on t...The Mujicun Cu (Mo) ore deposit at Laiyuan, Hebei Province, is a currently proven large-sized Cu (Mo) polymetallic ore deposit and it is located in the second-ordered fault depression basin of the ditachment belt on the hanging-wall on the western side at the juncture of the Laiyuan dumbell-shaped complex in the northern part of the Fuping mantle-branch structure. Metallogenesis is controlled by diorite porphyrite in intrusive relation with the fault depression basin and other relevant fault structure systems and intenstive wall-rock alteration zones. This study, in conjunction with the most recent exploration data, analyzed the geological background of metallogenesis of this deposit, summaried the geological characteristics of typical ore deposits, determined the alteration zonation of the deposit, investigated regional metallogenesis and the genesis of typical ore deposits, discussed the regional ore-forming and ore-controlling structures, and generalized the regional ore-controlling model and metallogenic model of the deposit. It is considered that the Mujicun porphry Cu (Mo) deposit, the Tieling, Futuyu, Xiaoligou and other skarn-type Fe-Cu deposits and the He'ergou hydrothermal-type Pb-Zn-Ag deposit jointly constitute a three-in-one polymetallic orefield, with the characteristics of typical metallogenic series.展开更多
The Dajing Cu-Sn-polymetallic ore deposit is famous for its large scale, abundant associated elements, narrow and closely-spaced development of ore veins and high grade, but exploration within the mining district and ...The Dajing Cu-Sn-polymetallic ore deposit is famous for its large scale, abundant associated elements, narrow and closely-spaced development of ore veins and high grade, but exploration within the mining district and its deeper parts has revealed no Yanshanian rockbody. Therefore, there have been proposed a diversity of hypotheses on the genesis of the deposit. The authors, from the angle of mantle-branch structure, provided evidence showing that the mining district is located in the core of the Da Hinggan Ling mantle-branch structure, the multi-stage evolution of mantle plume paved the way for the ascending of deep-source ore fluids and these fluids extracted part of the ore-forming materials. Then, these ore-forming materials were concentrated in the favorable structural loci (e.g. structural fissures) to form ores. The orientation of ore-forming and ore-controlling fissures is closely related to the regionally structural stress field at the metallogenic stage. The zonation of Sn, Cu, Au, Ag, Pb, and Zn within the mining district appears to be related to metallogenesis and the crystallization temperature of ore-forming materials. Mineralization of Sn, Cu, Au, etc. which require relatively high crystallization temperature and pressure is in most cases recognized in the central part of the mining district, while that of Ag, Pb, Zn, etc. which require relatively low crystallization temperature and pressure is, for the most part, produced in the periphery of the mining district.展开更多
基金This research was performed as part of the project supported by the National Natural Science Foundation of China(grant 40272088)Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX1-07)the Program of Financially Aiding Backbone Teachers Working in Colleges and Universities(J-00-25).
文摘Mineral deposits are unevenly distributed in the Earth's crust, which is closely related to the formation and evolution of the Earth. In the early history of the Earth, controlled by the gravitational contraction and thermal expansion, lighter elements, such as radioactive, halogen-family, rare and rare earth elements and alkali metals, migrated upwards; whereas heavier elements, such as iron-family and platinum-family elements, base metals and noble metals, had a tendency of sinking to the Earth's core, so that the elements iron, nickel, gold and silver are mainly concentrated in the Earth's core. However, during the formation of the stratified structure of the Earth, the existence of temperature, pressure and viscosity differences inside and outside the Earth resulted in vertical material movement manifested mainly by cascaded evolution of mantle plumes in the Earth. The stratifications and vertical movement of the Earth were interdependent and constituted the motive force of the mantle-core movement. The cascaded evolution of mantle plumes opens the passageways for the migration of deep-seated ore-forming material, and thus elements such as gold and silver concentrated in the core and on the core-mantle boundary migrate as the gaseous state together with the hot material flow of mantle plumes against the gravitational force through the passageways to the lithosphere, then migrate as the mixed gas-liquid state to the near-surface level and finally are concentrated in favorable structural expansion zones, forming mineral deposits. This is possibly the important metallogenic mechanism for gold, silver, lead, zinc, copper and other many elements. Take for example the NE-plunging crown of the Fuping mantle-branch structure, the paper analyzes ductile-brittle shear zone-type gold fields (Weijiayu) at the core of the magmatic-metamorphic complex, principal detachment-type gold fields (Shangmingyu) and hanging-wall cover fissure-vein-type lead-zinc polymetallic ore fields (Lianbaling) and further briefly analyzes the
基金supported by the National Natural Science Foundation of China(grants 40272088,40072073)the Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX1-07)the Project of Large scale Geological Survey in China(200110200038).
文摘The basin-range coupling relation is a leading subject of the modern geology. In geometry, relations of this type include couplings between stretched orogenic belt and down-faulted basin, compressional orogenic belt and foreland basin, strike-slip orogenic belt and strike-slip basin and so on. Fault chains are the key for these couplings and there are typical examples for all these cases. The North China down-faulted basin is coupled west with the Taihang uplift, east with the Jiao-Liao Mountains, north with the Yanshan orogenic belt and south with the Dabie orogenic belt, that is to say, the central down-faulted basin and the surrounding orogenic belts bear a coupling relation within a uniform dynamistic system. Study shows that the central down-faulted basin and the North China mantle sub-plume structure have a close relation during their formation. Owing to intensive mantle sub-plume uplifting, the bottom of the lithosphere suffered from resistance, which caused the lithosphere of the eastern North China to be heated, thinned and fault-depressed. Meanwhile, mantle rocks that were detached outwards in the shape of mushroom was dissected by surrounding ductile shearing zones, which lead to decompression and unloading to generate hypomagmas, and a series of mantle-branch structures were formed around the down-faulted basin. There is an obvious comparability among these mantle branch structures (orogenic belts), and they have basin-range coupling relations with the central down-faulted basins.
基金This research project is financially granted jointly by the National Natural Science Foundation of China (Grant No 40872137)the Natural Science Foundation of Hebei Province (Grant Nos D2007000751, D2008000534)
文摘Under the guidance of the theory of mantle-branch structure-associated metallogenesis and on the basis of the geological characteristics, analysis of the ore-forming and ore-controlling structures, the geochemical characteristics of metallogenesis, the source of ore-forming materials, changes in the physical and chemical conditions of metallogenesis, changes in the vertical width of ore veins, and changes in gold grade of the Shihu gold deposit, the mechanism of its metallogenesis was discussed and the rules of vertical variation of ore veins were summarized in this study. It is pointed out that the orebodies under exploitation at present time should be in the middle and upper portions of gold veins in the Shihu gold mining district. Particularly on the basis of the characteristics of mantle-branch structure-associated metallogenesis, it is indicated that metallogenesis is controlled mainly by such ore-forming conditions as temperature and pressure. Deep-seated ore-forming fluids are characterized mainly by injection and precipitation. So the vein bodies in the adjacent metallogenic structures are of obvious comparability, and there would be great prospects for ore search both at depth and in the periphery of the Shihu gold deposit. Therefore, ore prospecting should be strengthened both at depth and in the peripheries.
基金the Crisis Mine Project (20109901, 20089948) of the National Natural Science Foundation of China (40872137)Scientific Base Research Program of China's Typical Metallic Ore Deposits (200911007)
文摘The Mujicun Cu (Mo) ore deposit at Laiyuan, Hebei Province, is a currently proven large-sized Cu (Mo) polymetallic ore deposit and it is located in the second-ordered fault depression basin of the ditachment belt on the hanging-wall on the western side at the juncture of the Laiyuan dumbell-shaped complex in the northern part of the Fuping mantle-branch structure. Metallogenesis is controlled by diorite porphyrite in intrusive relation with the fault depression basin and other relevant fault structure systems and intenstive wall-rock alteration zones. This study, in conjunction with the most recent exploration data, analyzed the geological background of metallogenesis of this deposit, summaried the geological characteristics of typical ore deposits, determined the alteration zonation of the deposit, investigated regional metallogenesis and the genesis of typical ore deposits, discussed the regional ore-forming and ore-controlling structures, and generalized the regional ore-controlling model and metallogenic model of the deposit. It is considered that the Mujicun porphry Cu (Mo) deposit, the Tieling, Futuyu, Xiaoligou and other skarn-type Fe-Cu deposits and the He'ergou hydrothermal-type Pb-Zn-Ag deposit jointly constitute a three-in-one polymetallic orefield, with the characteristics of typical metallogenic series.
基金This research was jointly granted by the Key Scientific Research Project of Inner Mongolia Geological Survey(2004-05)the National Natural Science Foundation of China(Grant No.40272088).
文摘The Dajing Cu-Sn-polymetallic ore deposit is famous for its large scale, abundant associated elements, narrow and closely-spaced development of ore veins and high grade, but exploration within the mining district and its deeper parts has revealed no Yanshanian rockbody. Therefore, there have been proposed a diversity of hypotheses on the genesis of the deposit. The authors, from the angle of mantle-branch structure, provided evidence showing that the mining district is located in the core of the Da Hinggan Ling mantle-branch structure, the multi-stage evolution of mantle plume paved the way for the ascending of deep-source ore fluids and these fluids extracted part of the ore-forming materials. Then, these ore-forming materials were concentrated in the favorable structural loci (e.g. structural fissures) to form ores. The orientation of ore-forming and ore-controlling fissures is closely related to the regionally structural stress field at the metallogenic stage. The zonation of Sn, Cu, Au, Ag, Pb, and Zn within the mining district appears to be related to metallogenesis and the crystallization temperature of ore-forming materials. Mineralization of Sn, Cu, Au, etc. which require relatively high crystallization temperature and pressure is in most cases recognized in the central part of the mining district, while that of Ag, Pb, Zn, etc. which require relatively low crystallization temperature and pressure is, for the most part, produced in the periphery of the mining district.