Polar dielectrics are important optical materials enabling the subwavelength manipulation of light in infrared due to their capability to excite phonon polaritons.In practice,it is highly desired to actively modify th...Polar dielectrics are important optical materials enabling the subwavelength manipulation of light in infrared due to their capability to excite phonon polaritons.In practice,it is highly desired to actively modify these hyperbolic phonon polaritons(HPPs) to optimize or tune the response of the device.In this work,we investigate the plasmonic material,a monolayer graphene,and study its hybrid structure with three kinds of hyperbolic thin films grown on SiO_2 substrate.The inter-mode hybridization and their tunability have been thoroughly clarified from both the band dispersions and the mode patterns numerically calculated through a transfer matrix method.Our results show that these hybrid multilayer structures are of strong potentials for applications in plasmonic waveguides,modulators and detectors in infrared.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61271085)the Natural Science Foundation of Zhejiang Province,China(Grant No.LR15F050001)
文摘Polar dielectrics are important optical materials enabling the subwavelength manipulation of light in infrared due to their capability to excite phonon polaritons.In practice,it is highly desired to actively modify these hyperbolic phonon polaritons(HPPs) to optimize or tune the response of the device.In this work,we investigate the plasmonic material,a monolayer graphene,and study its hybrid structure with three kinds of hyperbolic thin films grown on SiO_2 substrate.The inter-mode hybridization and their tunability have been thoroughly clarified from both the band dispersions and the mode patterns numerically calculated through a transfer matrix method.Our results show that these hybrid multilayer structures are of strong potentials for applications in plasmonic waveguides,modulators and detectors in infrared.