期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Local features and manifold ranking coupled method for sketch-based 3D model retrieval 被引量:1
1
作者 Xiaohui TAN Yachun FAN Ruiliang GUO 《Frontiers of Computer Science》 SCIE EI CSCD 2018年第5期1000-1012,共13页
3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fron... 3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fronts, we exploit spatial pyramids based local structures to facilitate the efficient construction of feature descriptors. Meanwhile, we propose an improved manifold ranking method, wherein all the categories between arbitrary model pairs will be taken into account. Since the smooth and detail-preserving line drawings of 3D model are important for sketch-based 3D model retrieval, the Difference of Gaussians (DOG) method is employed to extract the line drawings over the projected depth images of 3D model, and Bezier Curve is then adopted to further optimize the extracted line drawing. On that basis, we develop a 3D model retrieval engine to verify our method. We have conducted extensive experiments over various public benchmarks, and have made comprehensive comparisons with some state-of-the-art 3D retrieval methods. All the evaluation results based on the widely-used indicators prove the superiority of our method in accuracy, reliability, robustness, and versatility. 展开更多
关键词 sketch-based retrieval 3D model manifoldranking line drawing local features
原文传递
基于边界扩展的图像显著区域检测 被引量:3
2
作者 刘杰 王生进 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期72-78,共7页
在显著区域检测中,背景先验已被证明有效。通常,图像的边界图像块被假设为背景,其他图像块根据与边界图像块之间的差异来确定显著性,差异越大则显著性越强。然而,当图像背景杂乱或者前景与图像边界有重叠时,仅仅利用边界图像块作为背景... 在显著区域检测中,背景先验已被证明有效。通常,图像的边界图像块被假设为背景,其他图像块根据与边界图像块之间的差异来确定显著性,差异越大则显著性越强。然而,当图像背景杂乱或者前景与图像边界有重叠时,仅仅利用边界图像块作为背景将会产生包含较强噪声的显著图,从而使得检测精度下降。该文首先将图像边界图像块向图像内部扩展,使其包含尽可能多的背景像素;然后,利用未扩展到的图像块作为前景查询项,采用二级排序算法来度量所有图像块的显著性。在3个公开的复杂显著区域检测数据集上的大量实验表明该算法优于其他5种算法。 展开更多
关键词 显著区域检测 边界扩展 流形排序 相异性测度
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部