Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization problems. This paper presents a data-free...Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization problems. This paper presents a data-free deep neural network(DNN) based trajectory optimization method for intercepting noncooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard constrained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to integrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and reduces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Finally, numerical results demonstrate the feasibility and efficiency of our proposed method.展开更多
基金supported by the National Defense Science and Technology Innovation (18-163-15-Lz-001-004-13)。
文摘Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization problems. This paper presents a data-free deep neural network(DNN) based trajectory optimization method for intercepting noncooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard constrained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to integrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and reduces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Finally, numerical results demonstrate the feasibility and efficiency of our proposed method.