模糊函数可以对信号结构信息进行较为完整的描述,找出不同信号之间的差异,但搜索信号主脊切面的计算量较大。提出一种混沌优化与差分进化算法相结合的搜索模糊函数主脊AFMR(Ambiguity Function Main Ridge)切面,先差分进化全局搜索,再...模糊函数可以对信号结构信息进行较为完整的描述,找出不同信号之间的差异,但搜索信号主脊切面的计算量较大。提出一种混沌优化与差分进化算法相结合的搜索模糊函数主脊AFMR(Ambiguity Function Main Ridge)切面,先差分进化全局搜索,再混沌局部搜索,有效避免了算法陷入局部最优。将提取的信号主脊切面对比穷举法提取的主脊切面,保证正确性的同时显著提高搜索速度。将提取的主脊切面特征进行近邻传播聚类分析,针对聚类算法中偏向参数的不确定,提出动态调整偏向参数的构建式,提高算法性能。实验结果表明,该算法改进的近邻传播聚类准确率在低信噪比的情况下能达到90%以上,明显高于传统近邻传播算法。展开更多
文摘模糊函数可以对信号结构信息进行较为完整的描述,找出不同信号之间的差异,但搜索信号主脊切面的计算量较大。提出一种混沌优化与差分进化算法相结合的搜索模糊函数主脊AFMR(Ambiguity Function Main Ridge)切面,先差分进化全局搜索,再混沌局部搜索,有效避免了算法陷入局部最优。将提取的信号主脊切面对比穷举法提取的主脊切面,保证正确性的同时显著提高搜索速度。将提取的主脊切面特征进行近邻传播聚类分析,针对聚类算法中偏向参数的不确定,提出动态调整偏向参数的构建式,提高算法性能。实验结果表明,该算法改进的近邻传播聚类准确率在低信噪比的情况下能达到90%以上,明显高于传统近邻传播算法。