Transparent conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared on water-cooled glass substrate by radio frequency magnetron sputtering at ...Transparent conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared on water-cooled glass substrate by radio frequency magnetron sputtering at room temperature. The Ar sputtering pressure was varied from 0.5 to 3 Pa. The crystallinity increases and the electrical resistivity decreases when the sputtering pressure increases from 0.5 to 2.5 Pa. The cystallinity decreases and the electrical resistivity increases when the sputtering pressure increases from 2.5 to 3 Pa. When the sputtering pressure is 2.5 Pa, it is obtained that the lowest resistivity is 2.03 x 10^-3Ω .cm with a very high transmittance of above 94%. The deposited films are polycrystalline with a hexagonal structure and a preferred orientation perpendicular to the substrate.展开更多
Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX ...Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX phase coatings can be fabricated through firstly depositing a coating containing the three elements M,A,and X close to stoichiometry of the MAX phases using physical vapor deposition,followed by heat treatment in vacuum.In this work,Ti-Al-C coating was prepared on austenitic stainless steels by reactive DC magnetron sputtering with a compound Ti (50)Al (50) target,and CH4 used as the reactive gas.It was found that the as-deposited coating is mainly composed of Ti 3AlC antiperovskite phase with supersaturated solid solution of Al.Additionally,the ratio of Ti/Al remained the same as that of the target composition.Nevertheless,a thicker thermally grown Ti 2AlC MAX phase coating was obtained after being annealed at 800℃ in vacuum for 1 h.Meanwhile,the ratio of Ti/Al became close to stoichiometry of Ti 2AlC MAX phases.It can be understood that owing to the higher activity of Al,it diffused quickly into the substrate during annealing,and then more stable Ti 2AlC MAX phases transformed from the Ti 3AlC antiperovskite phase.展开更多
The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under...The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.展开更多
TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-r...TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-ray diffraction(XRD),atomic force microscopy(AFM) and ultraviolet spectrophotometer,respectively.The results indicated that working pressure was the key deposition parameter in?uencing the TiO2 film phase composition at room temperature,which directly affected its photocatalytic activity.With increasing working pressure,the target self-bias decreases monotonously.Therefore,low temperature TiO2 phase(anatase) could be deposited with high working pressure.The anatase TiO2 films deposited with 1.4 Pa working pressure displayed the highest photocatalytic activity by the decomposition of Methyl Orange solution,which the degradation rate reached the maximum(35%) after irradiation by ultraviolet light for 1 h.展开更多
The Cr-Mo-N films were deposited on high speed steel(HSS) substrates by a DC reactive magnetron sputtering equipment coupled with two horizontal magnetron sources.The effects of substrate negative bias voltage(Vb)...The Cr-Mo-N films were deposited on high speed steel(HSS) substrates by a DC reactive magnetron sputtering equipment coupled with two horizontal magnetron sources.The effects of substrate negative bias voltage(Vb),substrate temperature(Ts) and gas flow ratio(R= N2/(N2+ Ar)) on the microstructure,morphology,as well as the mechanical and tribological properties of the Cr-Mo-N films were investigated by virtue of X-ray diffraction(XRD) analysis,X-ray photoelectron spectroscopy(XPS),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),nano-indentation test,ball-on-disk tribometer,and Rockwell indenter et al.With increasing Vbto-100 V,the preferred orientation of the films changed from(111) to(200) and their mechanical and tribological properties were improved gradually,too.It was also found that Tsgave a significant effect on mechanical property enhancement.When the Tsreached 300 ℃,the film obtained the highest hardness and effective elastic modulus of approximately 30.1 and 420.5 GPa,respectively and its critical load increased to about 54 N.With increasing R,the phase transformation from body-centered-cubic(bcc) Cr and hexagonal CrMoNxmultiphase to single face-centered-cubic(fcc) solid solution phase was observed.The correlations between values of hardness(H),effective elastic modulus(E*),HIE*,H3/E*2,elastic recovery(1/14) and tribological properties of the films were also investigated.The results showed that the elastic recovery played an important role in the tribological behavior.展开更多
Low pressure sputtering with a controlled ratio of ion flux to deposited atom flux at the condensing surface is one of the main directions of development of magnetron sputtering methods. Unbalanced magnetron sputterin...Low pressure sputtering with a controlled ratio of ion flux to deposited atom flux at the condensing surface is one of the main directions of development of magnetron sputtering methods. Unbalanced magnetron sputtering, by producing dense secondary plasma around the substrate, provides a high ion current density. The closed-field unbalanced magnetron sputtering system (CFUBMS) has been established as a versatile technique for high-rate deposition high-quality metal, alloy, and ceramic thin films. The'key factor in the CFUBMS system is the ability to transport high ion currents to the substrate, which can enhance the formation of full dense coatings at relatively low value homologous temperature. The investigation shows that the energy of ions incidenced at the substrate and the ratio of the flux of these ions to the flux of condensing atoms are the fundamental parameters in determining the structure and properties of films produced by ion-assisted deposition processes. Increasing ion bombardment during deposition combined with increasing mobility of the condensing atoms favors the formation of a dense microstructure and a smooth surface.展开更多
Nanocrystalline ZrB2 film and nanocomposite Zr-B-O-N films were prepared by non-reactive as well as re- active magnetron sputtering techniques, respectively. By means of X-ray diffraction analysis, electron probe micr...Nanocrystalline ZrB2 film and nanocomposite Zr-B-O-N films were prepared by non-reactive as well as re- active magnetron sputtering techniques, respectively. By means of X-ray diffraction analysis, electron probe microanalysis, X-ray photoelectron spectroscopy, and scanning electron microscopy, the influence of nitrogen flow ratio on the film microstructure and characteristics were investigated systematically, including the depo- sition rate, chemical compositions, phase constituents, grain size, chemical bonding, as well as cross-sectional morphologies. Meanwhile, the hardness and adhesion of above films were also evaluated by micro-indentation method and a scratch tester. With increasing the nitrogen flow ratio, the deposition rate of above films de- creased approximately linearly, whereas the contents of N and O in the films increased gradually and tended to saturation. Moreover, the film microstructure was also altered gradually from a fine columnar microstructure to a featureless glass-structure. As the nitrogen flow ratio was 11.7%, the Zr-B-O-N film possessed an typical nanocomposite structure and presented good mechanical properties. During the process of reactive sputtering of metal borides, the introduction of nitrogen can show a pronounced suppression of columnar grain growth and strong nanocomposite structure forming ability.展开更多
The effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 coating fabricated by magnetron sputtering were investigated by scanning electron microscopy and ele...The effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 coating fabricated by magnetron sputtering were investigated by scanning electron microscopy and electrochemical tests.The FeCoCrNiMo0.3 coating was mainly composed of the face-centered cubic phase.High substrate temperature promoted the densification of the coating,and the pitting resistance and protective ability of the coating in 3.5wt%NaCl solution was thus improved.When the deposition time was prolonged at 500℃,the thickness of the coating remarkably increased.Meanwhile,the pitting resistance improved as the deposition time increased from 1 to 3 h;however,further improvement could not be obtained for the coating sputtered for 5 h.Overall,the pitting resistance of the FeCoCrNiMo0.3 coating sputtered at 500℃for 3 h exceeds those of most of the reported high-entropy alloy coatings.展开更多
SiOx (x = 0-2) films were deposited on BK-7 substrates by a low frequency reactive magnetron sputtering system with the oxygen flow rate (OFR) changing from 0 to 30 sccm. The samples were characterized by atomic f...SiOx (x = 0-2) films were deposited on BK-7 substrates by a low frequency reactive magnetron sputtering system with the oxygen flow rate (OFR) changing from 0 to 30 sccm. The samples were characterized by atomic force microscopy, spectrophotometer, and X-ray photoelectron spectroscopy. The extinction coefficient and refractive index decrease, while the optical transmittance increases with the increase of OFR from 0 to 17 sccm. The root mean square surface roughness has a maximum at 10 sccm OFR. The highest deposition rate is at 15 sccm OFR. Our results show that the films deposited at 20 sccm OFR are stoichiometric silica with relatively high deposition rate, low extinction coefficient, and low surface roughness. Therefore, a precise control of OFR is very important to obtain high quality films for optical applications.展开更多
Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical ...Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6.4 10 4 cm were obtained at a growth temperature of225 C and sputteringpower of 40 W, with carrier mobility of 33.0 cm 2 V 1 s 1 and carrier concentration of 2.8 10 20 cm 3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region.展开更多
Nano Research volume 13,pages1686–1692(2020)Cite this article 210 Accesses 1 Citations Metrics details Abstract Fiber-shaped supercapacitors(FSCs),owing to their high-power density and feasibility to be integrated in...Nano Research volume 13,pages1686–1692(2020)Cite this article 210 Accesses 1 Citations Metrics details Abstract Fiber-shaped supercapacitors(FSCs),owing to their high-power density and feasibility to be integrated into woven clothes,have drawn tremendous attentions as a key device for flexible energy storage.However,how to store more energy while withstanding various types of mechanical deformation is still a challenge for FSCs.Here,based on a magnetron sputtering method,different pseudocapacitive materials are conformally coated on self-supported carbon nanotube aligned films.This fabrication approach enables a stretchable,asymmetric,coaxial fiber-shaped supercapacitors with high performance.The asymmetric electrode configuration that consists of CNT@NiO@MnOx cathode and CNT@Fe2O3 anode successfully extends the FSC’s electrochemical window to 1.8 V in an aqueous electrolyte.As a result,a high specific capacitance of 10.4 F·cm^−3 is achieved at a current density of 30 mA·cm^−3 corresponding to a high energy density of 4.7 mWh·cm^−3.The mechanical stability of the stretchable FSC is demonstrated with a sustainable performance under strains up to 75%and a capacitance retention of 95%after 2,000 cycles under 75%strain.展开更多
In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation...In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation(PEO)in an aluminate and silicate electrolytes,respectively.The performance of PEO coatings was investigated by dry sliding wear and electrochemical corrosion tests.The aluminate coating exhibits excellent wear resistance under both 10 and 20 N loads.The silicate coating only shows low wear rate under 10 N,but it was destroyed under 20 N.Corrosion tests show that the Al layer after magnetron sputtering treatment alone cannot afford good protection to the Mg substrate.However,the duplex layer of PEO/Al can significantly improve the corrosion resistance of AZ31 alloy.Electrochemical tests show that the aluminate and silicate coatings have corrosion current densities of-1.6×10^(-6) and-1.1×10^(-6) A/cm^(2),respectively,which are two orders lower than that of the un-coated AZ31 alloy.However,immersion tests and electrochemical impedance spectroscopy(EIS)show that the aluminate coating exhibits better long-term corrosion protection than silicate coating.展开更多
文摘Transparent conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared on water-cooled glass substrate by radio frequency magnetron sputtering at room temperature. The Ar sputtering pressure was varied from 0.5 to 3 Pa. The crystallinity increases and the electrical resistivity decreases when the sputtering pressure increases from 0.5 to 2.5 Pa. The cystallinity decreases and the electrical resistivity increases when the sputtering pressure increases from 2.5 to 3 Pa. When the sputtering pressure is 2.5 Pa, it is obtained that the lowest resistivity is 2.03 x 10^-3Ω .cm with a very high transmittance of above 94%. The deposited films are polycrystalline with a hexagonal structure and a preferred orientation perpendicular to the substrate.
基金supported by the National Natural Science Foundation of China (Grant No.51522106 and Grant No.51401229)the National Science and Technology Major Project of China (Grant No.2015ZX06004-001)the Ningbo Municipal Natural Science Foundation (Grant No.2014A610013)
文摘Due to the excellent corrosion resistance and high irradiation damage resistance,Ti 2AlC MAX phase is considered as a candidate for applications as corrosion resistant and irradiation resistant protective coating.MAX phase coatings can be fabricated through firstly depositing a coating containing the three elements M,A,and X close to stoichiometry of the MAX phases using physical vapor deposition,followed by heat treatment in vacuum.In this work,Ti-Al-C coating was prepared on austenitic stainless steels by reactive DC magnetron sputtering with a compound Ti (50)Al (50) target,and CH4 used as the reactive gas.It was found that the as-deposited coating is mainly composed of Ti 3AlC antiperovskite phase with supersaturated solid solution of Al.Additionally,the ratio of Ti/Al remained the same as that of the target composition.Nevertheless,a thicker thermally grown Ti 2AlC MAX phase coating was obtained after being annealed at 800℃ in vacuum for 1 h.Meanwhile,the ratio of Ti/Al became close to stoichiometry of Ti 2AlC MAX phases.It can be understood that owing to the higher activity of Al,it diffused quickly into the substrate during annealing,and then more stable Ti 2AlC MAX phases transformed from the Ti 3AlC antiperovskite phase.
基金supported by a 2-Year Research Grant of Pusan National University,Korea
文摘The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.
基金supported by the Dalian Foundation for Development of Science and Technology (No.2006A13GX029)
文摘TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-ray diffraction(XRD),atomic force microscopy(AFM) and ultraviolet spectrophotometer,respectively.The results indicated that working pressure was the key deposition parameter in?uencing the TiO2 film phase composition at room temperature,which directly affected its photocatalytic activity.With increasing working pressure,the target self-bias decreases monotonously.Therefore,low temperature TiO2 phase(anatase) could be deposited with high working pressure.The anatase TiO2 films deposited with 1.4 Pa working pressure displayed the highest photocatalytic activity by the decomposition of Methyl Orange solution,which the degradation rate reached the maximum(35%) after irradiation by ultraviolet light for 1 h.
基金supported by the National Key Basic Research Program of China (973 Program, No. 2012CB625100)the National Natural Science Foundation of China (NSFC, No. 51171197)the Natural Science Foundation of Liaoning Province of China (No. 2013020093)
文摘The Cr-Mo-N films were deposited on high speed steel(HSS) substrates by a DC reactive magnetron sputtering equipment coupled with two horizontal magnetron sources.The effects of substrate negative bias voltage(Vb),substrate temperature(Ts) and gas flow ratio(R= N2/(N2+ Ar)) on the microstructure,morphology,as well as the mechanical and tribological properties of the Cr-Mo-N films were investigated by virtue of X-ray diffraction(XRD) analysis,X-ray photoelectron spectroscopy(XPS),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),nano-indentation test,ball-on-disk tribometer,and Rockwell indenter et al.With increasing Vbto-100 V,the preferred orientation of the films changed from(111) to(200) and their mechanical and tribological properties were improved gradually,too.It was also found that Tsgave a significant effect on mechanical property enhancement.When the Tsreached 300 ℃,the film obtained the highest hardness and effective elastic modulus of approximately 30.1 and 420.5 GPa,respectively and its critical load increased to about 54 N.With increasing R,the phase transformation from body-centered-cubic(bcc) Cr and hexagonal CrMoNxmultiphase to single face-centered-cubic(fcc) solid solution phase was observed.The correlations between values of hardness(H),effective elastic modulus(E*),HIE*,H3/E*2,elastic recovery(1/14) and tribological properties of the films were also investigated.The results showed that the elastic recovery played an important role in the tribological behavior.
文摘Low pressure sputtering with a controlled ratio of ion flux to deposited atom flux at the condensing surface is one of the main directions of development of magnetron sputtering methods. Unbalanced magnetron sputtering, by producing dense secondary plasma around the substrate, provides a high ion current density. The closed-field unbalanced magnetron sputtering system (CFUBMS) has been established as a versatile technique for high-rate deposition high-quality metal, alloy, and ceramic thin films. The'key factor in the CFUBMS system is the ability to transport high ion currents to the substrate, which can enhance the formation of full dense coatings at relatively low value homologous temperature. The investigation shows that the energy of ions incidenced at the substrate and the ratio of the flux of these ions to the flux of condensing atoms are the fundamental parameters in determining the structure and properties of films produced by ion-assisted deposition processes. Increasing ion bombardment during deposition combined with increasing mobility of the condensing atoms favors the formation of a dense microstructure and a smooth surface.
基金funded the National Core Research Center(NCRC)Program through the National Research Foundation of Koreafunded by the Ministry of Education,Science and Technology(No.2012-0000-957)+1 种基金by the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy,Republic of Koreafunded by the Shenyang Science&Technology Plan Project for the Special of Tackling Key Problems of Industrial Science and Technology(No.F12-012-2-00)
文摘Nanocrystalline ZrB2 film and nanocomposite Zr-B-O-N films were prepared by non-reactive as well as re- active magnetron sputtering techniques, respectively. By means of X-ray diffraction analysis, electron probe microanalysis, X-ray photoelectron spectroscopy, and scanning electron microscopy, the influence of nitrogen flow ratio on the film microstructure and characteristics were investigated systematically, including the depo- sition rate, chemical compositions, phase constituents, grain size, chemical bonding, as well as cross-sectional morphologies. Meanwhile, the hardness and adhesion of above films were also evaluated by micro-indentation method and a scratch tester. With increasing the nitrogen flow ratio, the deposition rate of above films de- creased approximately linearly, whereas the contents of N and O in the films increased gradually and tended to saturation. Moreover, the film microstructure was also altered gradually from a fine columnar microstructure to a featureless glass-structure. As the nitrogen flow ratio was 11.7%, the Zr-B-O-N film possessed an typical nanocomposite structure and presented good mechanical properties. During the process of reactive sputtering of metal borides, the introduction of nitrogen can show a pronounced suppression of columnar grain growth and strong nanocomposite structure forming ability.
基金the National Science and Technology Major Project of China(No.2017-VII-0012-0109).
文摘The effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 coating fabricated by magnetron sputtering were investigated by scanning electron microscopy and electrochemical tests.The FeCoCrNiMo0.3 coating was mainly composed of the face-centered cubic phase.High substrate temperature promoted the densification of the coating,and the pitting resistance and protective ability of the coating in 3.5wt%NaCl solution was thus improved.When the deposition time was prolonged at 500℃,the thickness of the coating remarkably increased.Meanwhile,the pitting resistance improved as the deposition time increased from 1 to 3 h;however,further improvement could not be obtained for the coating sputtered for 5 h.Overall,the pitting resistance of the FeCoCrNiMo0.3 coating sputtered at 500℃for 3 h exceeds those of most of the reported high-entropy alloy coatings.
基金This work was supported by the National Natural Sci-ence Foundation of China under Grant No. 50121202and 10174073
文摘SiOx (x = 0-2) films were deposited on BK-7 substrates by a low frequency reactive magnetron sputtering system with the oxygen flow rate (OFR) changing from 0 to 30 sccm. The samples were characterized by atomic force microscopy, spectrophotometer, and X-ray photoelectron spectroscopy. The extinction coefficient and refractive index decrease, while the optical transmittance increases with the increase of OFR from 0 to 17 sccm. The root mean square surface roughness has a maximum at 10 sccm OFR. The highest deposition rate is at 15 sccm OFR. Our results show that the films deposited at 20 sccm OFR are stoichiometric silica with relatively high deposition rate, low extinction coefficient, and low surface roughness. Therefore, a precise control of OFR is very important to obtain high quality films for optical applications.
基金supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No.2009AA03Z428)
文摘Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6.4 10 4 cm were obtained at a growth temperature of225 C and sputteringpower of 40 W, with carrier mobility of 33.0 cm 2 V 1 s 1 and carrier concentration of 2.8 10 20 cm 3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region.
基金This work was financially supported by the National Key R&D Program of China(No.2016YFB0100100)the National Natural Science Foundation of China(Nos.21433013,U1832218,and 21975140).
文摘Nano Research volume 13,pages1686–1692(2020)Cite this article 210 Accesses 1 Citations Metrics details Abstract Fiber-shaped supercapacitors(FSCs),owing to their high-power density and feasibility to be integrated into woven clothes,have drawn tremendous attentions as a key device for flexible energy storage.However,how to store more energy while withstanding various types of mechanical deformation is still a challenge for FSCs.Here,based on a magnetron sputtering method,different pseudocapacitive materials are conformally coated on self-supported carbon nanotube aligned films.This fabrication approach enables a stretchable,asymmetric,coaxial fiber-shaped supercapacitors with high performance.The asymmetric electrode configuration that consists of CNT@NiO@MnOx cathode and CNT@Fe2O3 anode successfully extends the FSC’s electrochemical window to 1.8 V in an aqueous electrolyte.As a result,a high specific capacitance of 10.4 F·cm^−3 is achieved at a current density of 30 mA·cm^−3 corresponding to a high energy density of 4.7 mWh·cm^−3.The mechanical stability of the stretchable FSC is demonstrated with a sustainable performance under strains up to 75%and a capacitance retention of 95%after 2,000 cycles under 75%strain.
基金the National Natural Science Foundation of China(No.51671084)。
文摘In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation(PEO)in an aluminate and silicate electrolytes,respectively.The performance of PEO coatings was investigated by dry sliding wear and electrochemical corrosion tests.The aluminate coating exhibits excellent wear resistance under both 10 and 20 N loads.The silicate coating only shows low wear rate under 10 N,but it was destroyed under 20 N.Corrosion tests show that the Al layer after magnetron sputtering treatment alone cannot afford good protection to the Mg substrate.However,the duplex layer of PEO/Al can significantly improve the corrosion resistance of AZ31 alloy.Electrochemical tests show that the aluminate and silicate coatings have corrosion current densities of-1.6×10^(-6) and-1.1×10^(-6) A/cm^(2),respectively,which are two orders lower than that of the un-coated AZ31 alloy.However,immersion tests and electrochemical impedance spectroscopy(EIS)show that the aluminate coating exhibits better long-term corrosion protection than silicate coating.