Spintronic devices are driving new paradigms of bio-inspired,energy efficient computation like neuromorphic stochastic computing and in-memory computing.They have also emerged as key candidates for non-volatile memori...Spintronic devices are driving new paradigms of bio-inspired,energy efficient computation like neuromorphic stochastic computing and in-memory computing.They have also emerged as key candidates for non-volatile memories for embedded systems as well as alternatives to persistent memories.To meet the growing demands from such diverse applications,there is need for innovation in materials and device designs which can be scaled and adapted according to the application.Two-dimensional(2D)magnetic materials address challenges facing bulk magnet systems by offering scalability while maintaining device integrity and allowing efficient control of magnetism.In this review,we highlight the progress made in experimental studies on 2D magnetic materials towards their integration into spintronic devices.We provide an account of the various relevant material discoveries,demonstrations of current and voltage-based control of magnetism and reported device systems,while also discussing the challenges and opportunities towards integration of 2D magnetic materials in commercial spintronic devices.展开更多
为了解决软击穿导致的压控磁各向异性磁隧道结(voltage-controlled magnetic anisotropy magnetic tunnel junction,VCMA-MTJ)及其读电路性能下降的问题,在对VCMA-MTJ软击穿机理深入分析的基础上,修正了VCMA-MTJ的电学模型,设计了一种...为了解决软击穿导致的压控磁各向异性磁隧道结(voltage-controlled magnetic anisotropy magnetic tunnel junction,VCMA-MTJ)及其读电路性能下降的问题,在对VCMA-MTJ软击穿机理深入分析的基础上,修正了VCMA-MTJ的电学模型,设计了一种具有固定参考电阻的VCMA-MTJ读电路和一种具有参考电阻调控单元的VCMA-MTJ读电路,研究了软击穿对VCMA-MTJ电阻R_(t)、隧穿磁阻比率M、软击穿时间T_(s)以及VCMA-MTJ读电路读错误率的影响。结果表明:软击穿的出现会导致R_(t)和M均随应力时间t的增加而降低,T_(s)随氧化层厚度t_(ox)的增大而缓慢增加,却随脉冲电压V_(b)的增大而迅速减少,与反平行态相比,平行态的T_(s)更短且M降低50%所需时间更少;具有固定参考电阻的VCMA-MTJ读电路可有效避免读“0”错误率的产生,但读“1”错误率却随t的增加而上升,而具有参考电阻调控单元的VCMA-MTJ读电路可在保持读“0”正确率的同时,对读“1”错误率改善达54%,在一定程度上削弱了软击穿对VCMA-MTJ读电路的影响。展开更多
新型非易失磁性随机存储器(magnetic random access memory,MRAM)具有读写速度快、数据保持时间长、功耗低等优点,引起了研究人员的广泛关注。其优异的抗辐照能力被人们深入挖掘,有望进一步应用于航天等领域。本文回顾了MRAM的产业化发...新型非易失磁性随机存储器(magnetic random access memory,MRAM)具有读写速度快、数据保持时间长、功耗低等优点,引起了研究人员的广泛关注。其优异的抗辐照能力被人们深入挖掘,有望进一步应用于航天等领域。本文回顾了MRAM的产业化发展历程、技术变革及应用情况,列举了近年成熟的MRAM产品,对不同的代际MRAM的优缺点进行了剖析;对MRAM核心存储单元——磁隧道结(magnetic tunnel junction,MTJ)和外围基于互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)的读写电路的辐射效应分别进行了探讨;总结了近年来MRAM抗辐照加固设计方面的最新成果;对抗辐照MRAM在航空航天领域甚至核能领域的发展前景进行了展望。展开更多
Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. ...Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. Next, a historical overview of PMA materials as magnetic electrodes, such as the RE-TM alloys TbFeCo and GdFeCo, novel tetragonal manganese alloys Mn-Ga, L10-ordered (Co, Fe)/Pt alloy, multilayer film [Co, Fe, CoFe/Pt, Pd, Ni, AU]N, and ultra-thin magnetic metal/oxidized barrier is offered. The other part of the article focuses on the optimization and fabrication of CoFeB/MgO/CoFeB p-MTJs, which is thought to have high potential to meet the main demands for non-volatile magnetic random access memory.展开更多
Intelligent computing paradigms have become increasingly important for the efficient processing of massive amounts of data.However,using traditional electronic devices to implement these intelligent paradigms is curre...Intelligent computing paradigms have become increasingly important for the efficient processing of massive amounts of data.However,using traditional electronic devices to implement these intelligent paradigms is currently mismatched and limited by their energy,area,and speed.Spintronics,which exploits the magnetic and electrical properties of electrons,could break through these limitations and bring new possibilities to electrical devices.In particular,the tunneling magnetoresistance effect,merging quantum and spintronics,enables spintronic devices to be compatible with standard integrated circuits with a magnetic tunnel junction(MTJ)design,showing great potential for implementing hardware-based intelligent frameworks.In this review,we introduce the specific capabilities of MTJs,including nonvolatility,stochasticity,plasticity,and nonlinearity,which are highly favorable in artificial intelligence algorithms.We then present how these devices could impact the development of intelligent computing,including in-memory computing,probabilistic computing,and neuromorphic computing.Finally,we discuss their challenges and perspectives in intelligent hardware implementations.展开更多
Spintronics has received a great attention and significant interest within the past decades,and provided considerable and remarked applications in industry and electronic information etc.In spintronics,the MgO based m...Spintronics has received a great attention and significant interest within the past decades,and provided considerable and remarked applications in industry and electronic information etc.In spintronics,the MgO based magnetic tunnel junction(MTJ) is an important research advancement because of its physical properties and excellent performance,such as the high TMR ratio in MgO based MTJs.We present an overview of more than a decade development in MgO based MTJs.The review contains three main sections.(1) Research of several types of MgO based MTJs,including single-crystal MgO barrier based-MTJs,double barrier MTJs,MgO based MTJs with interlayer,novel electrode material MTJs based on MgO,novel barrier based MTJs,novel barrier MTJs based on MgO,and perpendicular MTJs.(2) Some typical physical effects in MgO based MTJs,which include six observed physical effects in MgO based MTJs,namely spin transfer torque(STT) effect,Coulomb blockade magnetoresistance(CBMR) effect,oscillatory magnetoresistance,quantum-well resonance tunneling effect,electric field assisted magnetization switching effect,and spincaloric effect.(3) In the last section,a brief introduction of some important device applications of MgO based MTJs,such as GMR & TMR read heads and magneto-sensitive sensors,both field and current switching MRAM,spin nano oscillators,and spin logic devices,have been provided.展开更多
文摘Spintronic devices are driving new paradigms of bio-inspired,energy efficient computation like neuromorphic stochastic computing and in-memory computing.They have also emerged as key candidates for non-volatile memories for embedded systems as well as alternatives to persistent memories.To meet the growing demands from such diverse applications,there is need for innovation in materials and device designs which can be scaled and adapted according to the application.Two-dimensional(2D)magnetic materials address challenges facing bulk magnet systems by offering scalability while maintaining device integrity and allowing efficient control of magnetism.In this review,we highlight the progress made in experimental studies on 2D magnetic materials towards their integration into spintronic devices.We provide an account of the various relevant material discoveries,demonstrations of current and voltage-based control of magnetism and reported device systems,while also discussing the challenges and opportunities towards integration of 2D magnetic materials in commercial spintronic devices.
文摘为了解决软击穿导致的压控磁各向异性磁隧道结(voltage-controlled magnetic anisotropy magnetic tunnel junction,VCMA-MTJ)及其读电路性能下降的问题,在对VCMA-MTJ软击穿机理深入分析的基础上,修正了VCMA-MTJ的电学模型,设计了一种具有固定参考电阻的VCMA-MTJ读电路和一种具有参考电阻调控单元的VCMA-MTJ读电路,研究了软击穿对VCMA-MTJ电阻R_(t)、隧穿磁阻比率M、软击穿时间T_(s)以及VCMA-MTJ读电路读错误率的影响。结果表明:软击穿的出现会导致R_(t)和M均随应力时间t的增加而降低,T_(s)随氧化层厚度t_(ox)的增大而缓慢增加,却随脉冲电压V_(b)的增大而迅速减少,与反平行态相比,平行态的T_(s)更短且M降低50%所需时间更少;具有固定参考电阻的VCMA-MTJ读电路可有效避免读“0”错误率的产生,但读“1”错误率却随t的增加而上升,而具有参考电阻调控单元的VCMA-MTJ读电路可在保持读“0”正确率的同时,对读“1”错误率改善达54%,在一定程度上削弱了软击穿对VCMA-MTJ读电路的影响。
基金supported by the National Natural Science Foundation of China (61825401 and 91964201)the Innovation Program for Quantum Science and Technology (2021ZD0302403)。
文摘新型非易失磁性随机存储器(magnetic random access memory,MRAM)具有读写速度快、数据保持时间长、功耗低等优点,引起了研究人员的广泛关注。其优异的抗辐照能力被人们深入挖掘,有望进一步应用于航天等领域。本文回顾了MRAM的产业化发展历程、技术变革及应用情况,列举了近年成熟的MRAM产品,对不同的代际MRAM的优缺点进行了剖析;对MRAM核心存储单元——磁隧道结(magnetic tunnel junction,MTJ)和外围基于互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)的读写电路的辐射效应分别进行了探讨;总结了近年来MRAM抗辐照加固设计方面的最新成果;对抗辐照MRAM在航空航天领域甚至核能领域的发展前景进行了展望。
基金supported by the State Key Project of Fundamental Research of Ministry of Science and Technology,China(Grant No.2010CB934400)the National Natural Science Foundation of China(Grant Nos.51229101 and 11374351)
文摘Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. Next, a historical overview of PMA materials as magnetic electrodes, such as the RE-TM alloys TbFeCo and GdFeCo, novel tetragonal manganese alloys Mn-Ga, L10-ordered (Co, Fe)/Pt alloy, multilayer film [Co, Fe, CoFe/Pt, Pd, Ni, AU]N, and ultra-thin magnetic metal/oxidized barrier is offered. The other part of the article focuses on the optimization and fabrication of CoFeB/MgO/CoFeB p-MTJs, which is thought to have high potential to meet the main demands for non-volatile magnetic random access memory.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFB4400201,and 2022YFB440020)the National Natural Science Foundation of China(Grant Nos.92164206,62271026,and 62001014)the Academic Excellence Foundation of BUAA for PhD Students。
文摘Intelligent computing paradigms have become increasingly important for the efficient processing of massive amounts of data.However,using traditional electronic devices to implement these intelligent paradigms is currently mismatched and limited by their energy,area,and speed.Spintronics,which exploits the magnetic and electrical properties of electrons,could break through these limitations and bring new possibilities to electrical devices.In particular,the tunneling magnetoresistance effect,merging quantum and spintronics,enables spintronic devices to be compatible with standard integrated circuits with a magnetic tunnel junction(MTJ)design,showing great potential for implementing hardware-based intelligent frameworks.In this review,we introduce the specific capabilities of MTJs,including nonvolatility,stochasticity,plasticity,and nonlinearity,which are highly favorable in artificial intelligence algorithms.We then present how these devices could impact the development of intelligent computing,including in-memory computing,probabilistic computing,and neuromorphic computing.Finally,we discuss their challenges and perspectives in intelligent hardware implementations.
基金supported by the State Key Project of Fundamental Research of the Ministry of Science and Technology(Grant No. 2010CB934400)the National Natural Science Foundation of China (Grant Nos.10934099,51021061,and 11104338)+2 种基金the National Science Fund for Distinguished Young Scholars(Grant No.50325104)the International Collaborative Research Programs between NSFC and EPSRC of the United Kingdom(Grant No.10911130234)between NSFC and ANR of France(Grant No.F040803)
文摘Spintronics has received a great attention and significant interest within the past decades,and provided considerable and remarked applications in industry and electronic information etc.In spintronics,the MgO based magnetic tunnel junction(MTJ) is an important research advancement because of its physical properties and excellent performance,such as the high TMR ratio in MgO based MTJs.We present an overview of more than a decade development in MgO based MTJs.The review contains three main sections.(1) Research of several types of MgO based MTJs,including single-crystal MgO barrier based-MTJs,double barrier MTJs,MgO based MTJs with interlayer,novel electrode material MTJs based on MgO,novel barrier based MTJs,novel barrier MTJs based on MgO,and perpendicular MTJs.(2) Some typical physical effects in MgO based MTJs,which include six observed physical effects in MgO based MTJs,namely spin transfer torque(STT) effect,Coulomb blockade magnetoresistance(CBMR) effect,oscillatory magnetoresistance,quantum-well resonance tunneling effect,electric field assisted magnetization switching effect,and spincaloric effect.(3) In the last section,a brief introduction of some important device applications of MgO based MTJs,such as GMR & TMR read heads and magneto-sensitive sensors,both field and current switching MRAM,spin nano oscillators,and spin logic devices,have been provided.