One-pot synthesis of Mg containing MCM-41(Mg-MCM-41) materials was respectively carried out by a room temperature(RT) method and a hydrothermal(HT) method for aldol condensation of 4-nitrobenzaldehyde and acetone and ...One-pot synthesis of Mg containing MCM-41(Mg-MCM-41) materials was respectively carried out by a room temperature(RT) method and a hydrothermal(HT) method for aldol condensation of 4-nitrobenzaldehyde and acetone and self-condensation of acetone. The RT method can prepare MCM-41 materials containing large amounts of Mg while maintaining the structural characteristics of MCM-41 even at very low Si/Mg ratios(large Mg loadings), but the HT method cannot. The RT method can also give more active catalysts than the HT method, because the catalysts prepared by the RT method are more basic than those prepared by the HT one. The characterization indicates that Mg atoms in the Mg-MCM-41 prepared by the RT method exist as MgO disperses well on the wall surface of pores, while those in Mg-MCM-41 prepared by the HT method are included in the bulk with a smectite-like structure.展开更多
Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achi...Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achieving the technical upgrades through catalyst design is desirable but challenging because of the difficulty in satisfying diverse demands of different steps.In this work,a magnetically responsive solid base catalyst with the rod-like nanostructure was developed.The rod-like solid base catalysts are composed of Fe_(3)O_(4) cores,silica shells and calcium oxide active sites.The functions of magnetic recovery and stirring were integrated into the catalyst,which applies in both the general catalytic processes and microchannel reactors given their nanoscales.When applied to the synthesis of dimethyl carbonate by onestep transesterification of methanol and ethylene carbonate,an apparent enhancement on turnover frequency value(33.1 h^(−1))was observed for nano-stirring compared with that tested without stirring(12.1 h^(−1))within 30 min.The present catalysts may open up new avenues in the development of advanced solid base catalysts.展开更多
文摘One-pot synthesis of Mg containing MCM-41(Mg-MCM-41) materials was respectively carried out by a room temperature(RT) method and a hydrothermal(HT) method for aldol condensation of 4-nitrobenzaldehyde and acetone and self-condensation of acetone. The RT method can prepare MCM-41 materials containing large amounts of Mg while maintaining the structural characteristics of MCM-41 even at very low Si/Mg ratios(large Mg loadings), but the HT method cannot. The RT method can also give more active catalysts than the HT method, because the catalysts prepared by the RT method are more basic than those prepared by the HT one. The characterization indicates that Mg atoms in the Mg-MCM-41 prepared by the RT method exist as MgO disperses well on the wall surface of pores, while those in Mg-MCM-41 prepared by the HT method are included in the bulk with a smectite-like structure.
基金supported by the National Natural Science Foundation of China Youth Project(21808110)the financial support of this work by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21878149,22078155,and 21722606)。
文摘Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achieving the technical upgrades through catalyst design is desirable but challenging because of the difficulty in satisfying diverse demands of different steps.In this work,a magnetically responsive solid base catalyst with the rod-like nanostructure was developed.The rod-like solid base catalysts are composed of Fe_(3)O_(4) cores,silica shells and calcium oxide active sites.The functions of magnetic recovery and stirring were integrated into the catalyst,which applies in both the general catalytic processes and microchannel reactors given their nanoscales.When applied to the synthesis of dimethyl carbonate by onestep transesterification of methanol and ethylene carbonate,an apparent enhancement on turnover frequency value(33.1 h^(−1))was observed for nano-stirring compared with that tested without stirring(12.1 h^(−1))within 30 min.The present catalysts may open up new avenues in the development of advanced solid base catalysts.