A new piezoelectric pump can pump liquid either forward or backward and adjust the flow rate. Thus an object can be driven forward or backward at different speeds. The driver of the pump, a circular piezoelectric plat...A new piezoelectric pump can pump liquid either forward or backward and adjust the flow rate. Thus an object can be driven forward or backward at different speeds. The driver of the pump, a circular piezoelectric plate, is modelled by Finite Element Method (FEM) in ANSYS and its performance is simulated and analyzed. The pump gives the best performance when the driving signals of the inlet and outlet valves have a bigger duty cycle and the plate has a higher voltage applied.展开更多
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf...Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices.展开更多
基金the National Science Foundation of China(No.50575093 and No.50775093)for the financial support.
文摘A new piezoelectric pump can pump liquid either forward or backward and adjust the flow rate. Thus an object can be driven forward or backward at different speeds. The driver of the pump, a circular piezoelectric plate, is modelled by Finite Element Method (FEM) in ANSYS and its performance is simulated and analyzed. The pump gives the best performance when the driving signals of the inlet and outlet valves have a bigger duty cycle and the plate has a higher voltage applied.
文摘Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices.