The influence of copper vapor on the low-voltage circuit breaker arcs is studied. A three-dimensional (3-D) magnetohydrodynamics(MHD) model of arc motion under the effect of external magnetic field is built up. By...The influence of copper vapor on the low-voltage circuit breaker arcs is studied. A three-dimensional (3-D) magnetohydrodynamics(MHD) model of arc motion under the effect of external magnetic field is built up. By adopting the commercial computational fluid dynamics (CFD) package FLUENT based on control-volume method, the above MHD model is solved. For the mediums of air-1% Cu and air-10% Cu, the distributions of stationary temperature, pressure, electrical potential and the arc motion processes are compared with those of a pure air arc. The copper vapor diffusion process in the arc chamber and the distribution of copper vapor mass concentration are also simulated. The results shows that the copper vapor has a cooling effect on the arc plasma and can decrease the stationary voltage as well. Moreover, the presence of copper vapor can decelerate the arc motion in the quenching chambers. The maximal copper vapor concentration locates behind the arc root because of the existence of a "double vortex" near the electrodes.展开更多
基金National Natural Science Foundation of China(Nos.5047702,50537050,50525722)Key Projects of Science and Technology Research of the Ministry of Education of China(No.10518)
文摘The influence of copper vapor on the low-voltage circuit breaker arcs is studied. A three-dimensional (3-D) magnetohydrodynamics(MHD) model of arc motion under the effect of external magnetic field is built up. By adopting the commercial computational fluid dynamics (CFD) package FLUENT based on control-volume method, the above MHD model is solved. For the mediums of air-1% Cu and air-10% Cu, the distributions of stationary temperature, pressure, electrical potential and the arc motion processes are compared with those of a pure air arc. The copper vapor diffusion process in the arc chamber and the distribution of copper vapor mass concentration are also simulated. The results shows that the copper vapor has a cooling effect on the arc plasma and can decrease the stationary voltage as well. Moreover, the presence of copper vapor can decelerate the arc motion in the quenching chambers. The maximal copper vapor concentration locates behind the arc root because of the existence of a "double vortex" near the electrodes.