Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for hi...Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for high speed operation. However, because of its complex irregular structure, the manufacturing process using silicon sheets is complicated. Soft magnetic composite material(SMC) is manufactured by powder metallurgy technology, which can produce various shapes of stator core structures, so it is easier to produce various irregular shapes of the stator core. However, the raw SMC material is relatively expensive, and the mechanical strength of SMC is weak. In this paper, a PMCPM with hybrid cores is proposed. With the adoption of hybrid silicon sheet-SMC cores and amorphous alloy-SMC cores, the torque ability of PMCPM can be improved greatly and it can have higher efficiency for more wide operation frequency. Meanwhile, its mechanical strength has been improved and it can be designed for high torque direct drive applications as it is a modular machine. Furthermore, three methods are proposed to reduce the additional eddy current loss which resulted from the employment of hybrid cores in PMCPM.展开更多
With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increas...With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.展开更多
Permanent magnet flux switching machines(PMFSM)have attracted significant research interest and are considered as competent candidates when higher torque density is primary requirement.However,conventional PMFSMs uses...Permanent magnet flux switching machines(PMFSM)have attracted significant research interest and are considered as competent candidates when higher torque density is primary requirement.However,conventional PMFSMs uses excessive rare earth PM volumes which ultimately increases machine the machine weight and PM cost.Moreover,the PMs extended at the stator yoke results in stator leakage flux which degrades the performance.To suppress the leakage flux and diminish the PM volume,the consequent pole PMFSM(CPPMFSM)with flux bridges and barriers encompassing partitioned circumferential and radial magnetized PMs is proposed,thereby ensuring an alternate magnetic path for the working harmonics which improves the modulation effect and flux distribution.Moreover,the influence of the rotor pole number on seven different rotor structures namely,curved rotor,trapezoidal rotor,wide rotor tooth tip,wide rotor base width,rectangular segmented and eccentric rotors are investigated based on the electromagnetic performance and stress distribution.Finite element analysis(FEA)reveals that the 12S-13P CPPMFSM with a wider rotor base offers comparatively better electromagnetic performance.Compare to the conventional PMFSM,the proposed CPPMFSM reduces the PM volume which minimizes the overall machine cost and weight,suppresses the torque ripples by 16.49%,diminishes total harmonic distortion(THD)by 35.24%and decreases cogging torque by 32.88%.Furthermore,the torque and power density are enhanced by 7.028%and 7.025%respectively.展开更多
The design, field quality optimization, multipole field analysis, and field measurement of a dipole for a newly developed superconducting proton cyclotron(SC200) beamline are presented in this paper. The maximum magne...The design, field quality optimization, multipole field analysis, and field measurement of a dipole for a newly developed superconducting proton cyclotron(SC200) beamline are presented in this paper. The maximum magnetic field of the dipole is 1.35 T; the bending radius is 1.6 m with a proton beam energy in the range of70–200 Me V. The magnetic field was calculated with 2 D and 3 D simulations, and measured with a Hall mapping system. The pole shim and end chamfer were optimized to improve the field quality. Based on the simulated results,the multipole field components in the good-field region were studied to evaluate the field quality. The results showed that the field quality is better than ± 5 × 10^(-4) at1.35 T with shimming and chamfering. For the transverse field homogeneity, the third-order(B3) and fifth-order(B5)components should be controlled with symmetrical shims.The second-order(B2) component was the main disturbance for the integral field homogeneity; it could be improved with an end chamfer. The magnet manufacturing and field measurement were performed in this project. The measurement results demonstrated that the magnetic design and field quality optimization of the 45° dipole magnet can achieve the desired high field quality and satisfy the physical requirements.展开更多
Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromag...Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromagnetic performance of partitioned stator switched flux permanent magnet(PM)machines(PS-SFPMMs)is investigated in this paper.Since the armature windings and PMs are located in two separated stators and PMs are stationary,PS-SFPMMs have high fault tolerance capabilities.To maximize the torque performance,the PM of inner stator pole should be aligned with outer stator pole when n is odd while the iron rib of inner stator pole should be aligned with outer stator pole when n is even.No matter what n is selected,the rotor pole number NR can be any integers except the phase number and its multiples.The analysis results indicate that the optimal NR is closed to(NIS+NOS)/2 and it is odd when n is odd while it is even when n is even.Meanwhile,symmetrical phase back-EMF waveform will be obtained when the ratio of Min(NOS,NIS)to the greatest common divisor of Min(NOS,NIS)and NR is even.Based on the optimal rotor pole numbers for 6-pole outer stator with different n and corresponding optimal relative position together with same rated copper loss,the average torque is improved by 18.4%,25.1%and 25.7%respectively in PS-SFPMMs with n equal to 2,3 and 4 when compared with PS-SFPMM with n equal to 1.The analyses are validated by experiment results of the prototype machine.展开更多
Due to magnetic gearing effects,spoke-type permanent magnet vernier machines(ST-PMVMs)have the merit of high torque density,where an extra torque amplification coefficient,i.e.,pole ratio(the pole-pair ratio of PMs to...Due to magnetic gearing effects,spoke-type permanent magnet vernier machines(ST-PMVMs)have the merit of high torque density,where an extra torque amplification coefficient,i.e.,pole ratio(the pole-pair ratio of PMs to armature windings)is introduced.However,different from surface-mounted PMVM,the variation of torque against pole ratio in ST-PMVMs is non-linear,which is increased at first and then decreased.This article is devoted to identify the optimal pole ratio of ST-PMVMs by equivalent magnetic circuit model.It is found that except the Prth air-gap magnetomotive force(MMF)harmonic having the same pole-pair of PM,the Path air-gap MMF harmonic having the same pole-pair of armature winding is also induced due to the modulation of doubly salient air-gap structure.The Prth MMF harmonic produces positive torque,while Path MMF harmonic produces negative torque.With the increase of pole ratio,the proportion of Path MMF harmonic as well as negative torque is increased,which reduces the advantages of high pole ratio coefficient.Further,the influence of dimension parameters on the performance of ST-PMVMs under different pole ratio are investigated.Results show that ST-PMVMs with pole ratio 2.6 have high torque density,low cogging torque and high power factor simultaneously.Finally,a prototype is manufactured to validate the analysis.展开更多
基金supported by the National Natural Science Foundation of China under project 52007047the Outstanding Youth Innovation Project funded by State Key Laboratory of Reliability and Intelligence of Electrical Equipment EERI_OY2021005。
文摘Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for high speed operation. However, because of its complex irregular structure, the manufacturing process using silicon sheets is complicated. Soft magnetic composite material(SMC) is manufactured by powder metallurgy technology, which can produce various shapes of stator core structures, so it is easier to produce various irregular shapes of the stator core. However, the raw SMC material is relatively expensive, and the mechanical strength of SMC is weak. In this paper, a PMCPM with hybrid cores is proposed. With the adoption of hybrid silicon sheet-SMC cores and amorphous alloy-SMC cores, the torque ability of PMCPM can be improved greatly and it can have higher efficiency for more wide operation frequency. Meanwhile, its mechanical strength has been improved and it can be designed for high torque direct drive applications as it is a modular machine. Furthermore, three methods are proposed to reduce the additional eddy current loss which resulted from the employment of hybrid cores in PMCPM.
基金supported by the Natural Science Foundation of Hubei Province(No.2019 CFB759)。
文摘With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.
文摘Permanent magnet flux switching machines(PMFSM)have attracted significant research interest and are considered as competent candidates when higher torque density is primary requirement.However,conventional PMFSMs uses excessive rare earth PM volumes which ultimately increases machine the machine weight and PM cost.Moreover,the PMs extended at the stator yoke results in stator leakage flux which degrades the performance.To suppress the leakage flux and diminish the PM volume,the consequent pole PMFSM(CPPMFSM)with flux bridges and barriers encompassing partitioned circumferential and radial magnetized PMs is proposed,thereby ensuring an alternate magnetic path for the working harmonics which improves the modulation effect and flux distribution.Moreover,the influence of the rotor pole number on seven different rotor structures namely,curved rotor,trapezoidal rotor,wide rotor tooth tip,wide rotor base width,rectangular segmented and eccentric rotors are investigated based on the electromagnetic performance and stress distribution.Finite element analysis(FEA)reveals that the 12S-13P CPPMFSM with a wider rotor base offers comparatively better electromagnetic performance.Compare to the conventional PMFSM,the proposed CPPMFSM reduces the PM volume which minimizes the overall machine cost and weight,suppresses the torque ripples by 16.49%,diminishes total harmonic distortion(THD)by 35.24%and decreases cogging torque by 32.88%.Furthermore,the torque and power density are enhanced by 7.028%and 7.025%respectively.
基金Hefei CAS Ion Medical and Technical Devices Co., Ltd. for their financial support of our research
文摘The design, field quality optimization, multipole field analysis, and field measurement of a dipole for a newly developed superconducting proton cyclotron(SC200) beamline are presented in this paper. The maximum magnetic field of the dipole is 1.35 T; the bending radius is 1.6 m with a proton beam energy in the range of70–200 Me V. The magnetic field was calculated with 2 D and 3 D simulations, and measured with a Hall mapping system. The pole shim and end chamfer were optimized to improve the field quality. Based on the simulated results,the multipole field components in the good-field region were studied to evaluate the field quality. The results showed that the field quality is better than ± 5 × 10^(-4) at1.35 T with shimming and chamfering. For the transverse field homogeneity, the third-order(B3) and fifth-order(B5)components should be controlled with symmetrical shims.The second-order(B2) component was the main disturbance for the integral field homogeneity; it could be improved with an end chamfer. The magnet manufacturing and field measurement were performed in this project. The measurement results demonstrated that the magnetic design and field quality optimization of the 45° dipole magnet can achieve the desired high field quality and satisfy the physical requirements.
文摘Based on the 6-pole outer stator(armature winding-stator),the influence of inner(permanent magnet-stator)/outer stator pole ratio n(n=NIS/NOS),stator relative positions and rotor pole number combinations on electromagnetic performance of partitioned stator switched flux permanent magnet(PM)machines(PS-SFPMMs)is investigated in this paper.Since the armature windings and PMs are located in two separated stators and PMs are stationary,PS-SFPMMs have high fault tolerance capabilities.To maximize the torque performance,the PM of inner stator pole should be aligned with outer stator pole when n is odd while the iron rib of inner stator pole should be aligned with outer stator pole when n is even.No matter what n is selected,the rotor pole number NR can be any integers except the phase number and its multiples.The analysis results indicate that the optimal NR is closed to(NIS+NOS)/2 and it is odd when n is odd while it is even when n is even.Meanwhile,symmetrical phase back-EMF waveform will be obtained when the ratio of Min(NOS,NIS)to the greatest common divisor of Min(NOS,NIS)and NR is even.Based on the optimal rotor pole numbers for 6-pole outer stator with different n and corresponding optimal relative position together with same rated copper loss,the average torque is improved by 18.4%,25.1%and 25.7%respectively in PS-SFPMMs with n equal to 2,3 and 4 when compared with PS-SFPMM with n equal to 1.The analyses are validated by experiment results of the prototype machine.
基金supported in part by the National Nature Science Foundation of China(NSFC)under Project 51977094in part by the National Key Research and Development Program of China under Grant 2017YFB0102400。
文摘Due to magnetic gearing effects,spoke-type permanent magnet vernier machines(ST-PMVMs)have the merit of high torque density,where an extra torque amplification coefficient,i.e.,pole ratio(the pole-pair ratio of PMs to armature windings)is introduced.However,different from surface-mounted PMVM,the variation of torque against pole ratio in ST-PMVMs is non-linear,which is increased at first and then decreased.This article is devoted to identify the optimal pole ratio of ST-PMVMs by equivalent magnetic circuit model.It is found that except the Prth air-gap magnetomotive force(MMF)harmonic having the same pole-pair of PM,the Path air-gap MMF harmonic having the same pole-pair of armature winding is also induced due to the modulation of doubly salient air-gap structure.The Prth MMF harmonic produces positive torque,while Path MMF harmonic produces negative torque.With the increase of pole ratio,the proportion of Path MMF harmonic as well as negative torque is increased,which reduces the advantages of high pole ratio coefficient.Further,the influence of dimension parameters on the performance of ST-PMVMs under different pole ratio are investigated.Results show that ST-PMVMs with pole ratio 2.6 have high torque density,low cogging torque and high power factor simultaneously.Finally,a prototype is manufactured to validate the analysis.