This work presents a review of the findings into the ability of a digitally based particle packing algorithm, called DigiPac, to predict bed structure in a variety of packed columns, for a range of generic pellet shap...This work presents a review of the findings into the ability of a digitally based particle packing algorithm, called DigiPac, to predict bed structure in a variety of packed columns, for a range of generic pellet shapes frequently used in the chemical and process engineering industries. Resulting macroscopic properties are compared with experimental data derived from both invasive and non-destructive measurement techniques. Additionally, fluid velocity distributions, through samples of the resulting bed structures, are analysed using lattice Boltzmann method (LBM) simulations and are compared against experimental data from the literature.展开更多
Graphene-based electrodes with rational structural design have shown extraordinary prospect for en-hanced electrical double-layer capacitance of micro-supercapacitors(MSCs).Herein,a facile fabrication method for flexi...Graphene-based electrodes with rational structural design have shown extraordinary prospect for en-hanced electrical double-layer capacitance of micro-supercapacitors(MSCs).Herein,a facile fabrication method for flexible planar MSCs based on hierarchical graphene was demonstrated by using a laser-treated membrane for electrode patterning,complemented with hierarchical electrode configuration tak-ing full advantages of size-determined functional graphene.The in-plane interdigital shape of MSCs was defined through vacuum filtration with the assistance of the functionalized polypropylene(PP)mem-brane.The hierarchical graphene films were built by macroscopic assembly based on size effect of differ-ent lateral sized graphene sheets(rGO-LSL).The sample of MSCs based on rGO-L SL(MSCs-LSL)exhibited excellent volumetric capacitance of 6.7 F cm^(−3) and high energy density of 0.37 mWh cm−3.The MSCs-LSL presented superb flexibility and cycling stability with no capacitance deteroriated after 2000 cycles.This newly developed fabrication strategy is of good scalability and designability to manufacture flexible elec-trode for MSCs with customized shapes,while the construction of hierarchical graphene can enlighten the structural design of analogous two-dimensional materials for potential advanced electronics.展开更多
文摘This work presents a review of the findings into the ability of a digitally based particle packing algorithm, called DigiPac, to predict bed structure in a variety of packed columns, for a range of generic pellet shapes frequently used in the chemical and process engineering industries. Resulting macroscopic properties are compared with experimental data derived from both invasive and non-destructive measurement techniques. Additionally, fluid velocity distributions, through samples of the resulting bed structures, are analysed using lattice Boltzmann method (LBM) simulations and are compared against experimental data from the literature.
基金financially supported by the National Natural Science Foundation of China (No.51975218 and U22A20193)the Natural Science Foundation of Guangdong Province (No.2021A1515010642)+2 种基金the Science and Technology Planning Project of Guangdong Province (No.2021A0505110002)the Fundamental Research Funds for the Central Universities (No.2022ZYGXZR101)the S&T Innovation Projects of Zhuhai City (No.ZH01110405180034PWC).
文摘Graphene-based electrodes with rational structural design have shown extraordinary prospect for en-hanced electrical double-layer capacitance of micro-supercapacitors(MSCs).Herein,a facile fabrication method for flexible planar MSCs based on hierarchical graphene was demonstrated by using a laser-treated membrane for electrode patterning,complemented with hierarchical electrode configuration tak-ing full advantages of size-determined functional graphene.The in-plane interdigital shape of MSCs was defined through vacuum filtration with the assistance of the functionalized polypropylene(PP)mem-brane.The hierarchical graphene films were built by macroscopic assembly based on size effect of differ-ent lateral sized graphene sheets(rGO-LSL).The sample of MSCs based on rGO-L SL(MSCs-LSL)exhibited excellent volumetric capacitance of 6.7 F cm^(−3) and high energy density of 0.37 mWh cm−3.The MSCs-LSL presented superb flexibility and cycling stability with no capacitance deteroriated after 2000 cycles.This newly developed fabrication strategy is of good scalability and designability to manufacture flexible elec-trode for MSCs with customized shapes,while the construction of hierarchical graphene can enlighten the structural design of analogous two-dimensional materials for potential advanced electronics.