A combination of both conventional and advanced high-resolution characterization techniques was applied to study the modified layers on the surface of three composite Al-Cr arc cathodes with identical nominal composit...A combination of both conventional and advanced high-resolution characterization techniques was applied to study the modified layers on the surface of three composite Al-Cr arc cathodes with identical nominal composition of Al-50 at.%Cr but varying powder grain sizes.The results revealed that the modified layers consist mainly of metastable phases such as Cr solid solution,high temperature cubic Al8 Cr5,supersaturated Al solid solution,and icosahedral quasicrystal.The metastable phase formation indicates that high cooling rates were involved during the solidification of molten material produced in the arc craters during cathode spot events.The average cooling rate was estimated to be 10^(6)K/s based on secondary dendrite arm spacing measurements and supporting phase-field based simulations.The formation mechanisms of the modified layers are discussed based on the obtained results and the current literature.展开更多
Current mainstream method of simulating plasma is based on rigid-macroparticle approximation in which many realistic particles are merged, according to their initial space positions regardless of their initial velocit...Current mainstream method of simulating plasma is based on rigid-macroparticle approximation in which many realistic particles are merged, according to their initial space positions regardless of their initial velocities, into a macroparticle, and do a global motion. This is a distorted picture because what each macroparticle do is to break into, because of differences among velocities of contained realistic particles, pieces with different destinations at next time point, rather than a global moving to a destination at next time point. Therefore, the scientific validity of results obtained from such an approximation cannot be warranted. Here, we propose a solution to this problem. It can fundamentally warrant exact solutions of plasma self-consistent fields and hence those of microscopic distribution function.展开更多
Discharge branching is a general phenomenon in atmospheric-pressure air,dense gases,and two-phase mixtures(TPMs).In this work,an ultraviolet imaging device is utilized to investigate the branching of positive pulsed d...Discharge branching is a general phenomenon in atmospheric-pressure air,dense gases,and two-phase mixtures(TPMs).In this work,an ultraviolet imaging device is utilized to investigate the branching of positive pulsed discharges in TPMs.Comparison among the captured images indicates that the branching is caused by the voltages and the macropartilces in the discharge channels combining together.The interaction of macroparticles with ions,electrons or photons is one reason for the branching behavior of pulsed discharges.The generation of electrons at the discharge front closely relates to the work function of dielectric macroparticles,which is a key parameter influencing the electron-emission ability of macroparticle surfaces.The electric field alteration under various applied voltage in TPMs,which is calculated by a two-dimension finite element method,is the other reason for the guiding effect of macroparticles on the streamers compared with in the air.展开更多
TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. Th...TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. The results show that the output plasmas of titanium target without filter and aluminium target with filter reach the substrate with the same order of magnitude. Meanwhile, the number of macropartieles in TiN/TiAlN multilayer coatings deposited with separate targets is only 1/10-1/3 of that deposited with alloy target reported in literature. Al atom addition may lead to the decrease of peak at (200) lattice plane and strengthening of peak at (111) and (220) lattice planes. The measured hardness of TiN/TiAlN multilayer coatings accords with the mixture principle and the maximum hardness is HV2495. The adhesion strength reaches 75 N.展开更多
基金Financial support by the Osterreichische Forschungs forderungsgesellschaft mb H(FFG)within the framework of the project“Arc Cathode Erosion”(Project No.856889)。
文摘A combination of both conventional and advanced high-resolution characterization techniques was applied to study the modified layers on the surface of three composite Al-Cr arc cathodes with identical nominal composition of Al-50 at.%Cr but varying powder grain sizes.The results revealed that the modified layers consist mainly of metastable phases such as Cr solid solution,high temperature cubic Al8 Cr5,supersaturated Al solid solution,and icosahedral quasicrystal.The metastable phase formation indicates that high cooling rates were involved during the solidification of molten material produced in the arc craters during cathode spot events.The average cooling rate was estimated to be 10^(6)K/s based on secondary dendrite arm spacing measurements and supporting phase-field based simulations.The formation mechanisms of the modified layers are discussed based on the obtained results and the current literature.
文摘Current mainstream method of simulating plasma is based on rigid-macroparticle approximation in which many realistic particles are merged, according to their initial space positions regardless of their initial velocities, into a macroparticle, and do a global motion. This is a distorted picture because what each macroparticle do is to break into, because of differences among velocities of contained realistic particles, pieces with different destinations at next time point, rather than a global moving to a destination at next time point. Therefore, the scientific validity of results obtained from such an approximation cannot be warranted. Here, we propose a solution to this problem. It can fundamentally warrant exact solutions of plasma self-consistent fields and hence those of microscopic distribution function.
基金Project supported by National Natural Science Foundation of China(50237010),National Basic Research Program of China(973 Program)(2011CB209400)
文摘Discharge branching is a general phenomenon in atmospheric-pressure air,dense gases,and two-phase mixtures(TPMs).In this work,an ultraviolet imaging device is utilized to investigate the branching of positive pulsed discharges in TPMs.Comparison among the captured images indicates that the branching is caused by the voltages and the macropartilces in the discharge channels combining together.The interaction of macroparticles with ions,electrons or photons is one reason for the branching behavior of pulsed discharges.The generation of electrons at the discharge front closely relates to the work function of dielectric macroparticles,which is a key parameter influencing the electron-emission ability of macroparticle surfaces.The electric field alteration under various applied voltage in TPMs,which is calculated by a two-dimension finite element method,is the other reason for the guiding effect of macroparticles on the streamers compared with in the air.
基金Projects (50773015, 10775036) supported by the National Natural Science Foundation of China
文摘TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. The results show that the output plasmas of titanium target without filter and aluminium target with filter reach the substrate with the same order of magnitude. Meanwhile, the number of macropartieles in TiN/TiAlN multilayer coatings deposited with separate targets is only 1/10-1/3 of that deposited with alloy target reported in literature. Al atom addition may lead to the decrease of peak at (200) lattice plane and strengthening of peak at (111) and (220) lattice planes. The measured hardness of TiN/TiAlN multilayer coatings accords with the mixture principle and the maximum hardness is HV2495. The adhesion strength reaches 75 N.