As the only natural satellite of the earth, the Moon has always been the first choice for human exploration of the solar system. China's lunar exploration project(Chang'e project) was launched in 2004. At pres...As the only natural satellite of the earth, the Moon has always been the first choice for human exploration of the solar system. China's lunar exploration project(Chang'e project) was launched in 2004. At present, it has created a perfect end to the three phases of “orbiting, landing and returning”. A series of remarkable research achievements have been made on the basic issues of current lunar scientific research, such as the Earth-Moon space environment, lunar surface material, morphology,geological structure, lunar subsurface and internal structure, and the origin and evolution of the Moon, further deepening the human understanding of the Moon. This paper briefly reviews the development process of China's lunar exploration project,summarizes the main research results and scientific understanding, and finally prospects to the future development of China's lunar and planetary exploration.展开更多
1 Overview of Chang'e-5 project As the final step of the"three-step''development strategy(i.e.,orbiting,landing and sample returning)of the Chinese Lunar Exploration Program,the Chang,e-5 project aims...1 Overview of Chang'e-5 project As the final step of the"three-step''development strategy(i.e.,orbiting,landing and sample returning)of the Chinese Lunar Exploration Program,the Chang,e-5 project aims to achieve moon surface sampling and retrieving for the first time in China.It was initiated with the approval of the State Council in January 2011.展开更多
Based on the tracking observations of radio ranges and VLBI delays of Chang’E-1 (CE-1) satellite during the controlled landing on the Moon on March 1, 2009, the landing trajectory and the coordinates of the landing p...Based on the tracking observations of radio ranges and VLBI delays of Chang’E-1 (CE-1) satellite during the controlled landing on the Moon on March 1, 2009, the landing trajectory and the coordinates of the landing point are determined by positioning analysis. It is shown that the landing epoch (the emission epoch of the last signal) of CE-1 satellite on the Moon was at UTC8h13m6.51s. The lunar longitude, latitude and surface height of the landing point in the lunar primary axes frame are respectively 52.2732°, 1.6440° and –3.56 km (the reference lunar radius is 1738 km). The uncertainties are 0.0040°, 0.0168° and 0.18 km. The corresponding uncertainty in the tangential direction of the lunar surface is 0.52 km and the three-dimensional (3D) positioning uncertainty is 0.55 km. It is accordingly deduced that even with the present technical specifications of the radio ranges and VLBI delays, the 1 km 3D positioning precision could be guaranteed for the lander in the second stage of China’s Lunar Explora- tion Project. Concerning the trace determination of the rover on the lunar surface, because only telemetry signal will be emitted, VLBI would be the sole tracking technique from the Earth. The application of the constraint of geocentric distance is shown to be helpful to improving the positioning precision. It is worthy to pay close attention to the applications of the same beam VLBI technique, the lunar topographic model and the on-board observations of the lander and rover to the position/trace determination of the rover.展开更多
文摘As the only natural satellite of the earth, the Moon has always been the first choice for human exploration of the solar system. China's lunar exploration project(Chang'e project) was launched in 2004. At present, it has created a perfect end to the three phases of “orbiting, landing and returning”. A series of remarkable research achievements have been made on the basic issues of current lunar scientific research, such as the Earth-Moon space environment, lunar surface material, morphology,geological structure, lunar subsurface and internal structure, and the origin and evolution of the Moon, further deepening the human understanding of the Moon. This paper briefly reviews the development process of China's lunar exploration project,summarizes the main research results and scientific understanding, and finally prospects to the future development of China's lunar and planetary exploration.
文摘1 Overview of Chang'e-5 project As the final step of the"three-step''development strategy(i.e.,orbiting,landing and sample returning)of the Chinese Lunar Exploration Program,the Chang,e-5 project aims to achieve moon surface sampling and retrieving for the first time in China.It was initiated with the approval of the State Council in January 2011.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10778635 and 10973030)China’s Lunar Exploration Project (CE-1)+1 种基金National High-Tech Research and Development Program of China (Grant Nos. 2008AA12A209 and 2008AA12A210)STC of Shanghai Munici-pality (Grant No. 06DZ22101)
文摘Based on the tracking observations of radio ranges and VLBI delays of Chang’E-1 (CE-1) satellite during the controlled landing on the Moon on March 1, 2009, the landing trajectory and the coordinates of the landing point are determined by positioning analysis. It is shown that the landing epoch (the emission epoch of the last signal) of CE-1 satellite on the Moon was at UTC8h13m6.51s. The lunar longitude, latitude and surface height of the landing point in the lunar primary axes frame are respectively 52.2732°, 1.6440° and –3.56 km (the reference lunar radius is 1738 km). The uncertainties are 0.0040°, 0.0168° and 0.18 km. The corresponding uncertainty in the tangential direction of the lunar surface is 0.52 km and the three-dimensional (3D) positioning uncertainty is 0.55 km. It is accordingly deduced that even with the present technical specifications of the radio ranges and VLBI delays, the 1 km 3D positioning precision could be guaranteed for the lander in the second stage of China’s Lunar Explora- tion Project. Concerning the trace determination of the rover on the lunar surface, because only telemetry signal will be emitted, VLBI would be the sole tracking technique from the Earth. The application of the constraint of geocentric distance is shown to be helpful to improving the positioning precision. It is worthy to pay close attention to the applications of the same beam VLBI technique, the lunar topographic model and the on-board observations of the lander and rover to the position/trace determination of the rover.