Wear and friction properties of surface modified Cu nanoparticles as 50CC oil additive were studied. The effect of temperature on tribological properties of Cu nanoparticles was investigated on a four-ball tester. The...Wear and friction properties of surface modified Cu nanoparticles as 50CC oil additive were studied. The effect of temperature on tribological properties of Cu nanoparticles was investigated on a four-ball tester. The morphologies, typical element distribution and chemical states of the worn surfaces were characterized by SEM, EDS and XPS, respectively. In order to further investigate the tribological mechanism of Cu nanoparticles, a nano-indentation tester was utilized to measure the micro mechanical properties of the worn surface. The results indicate that the higher the oil temperature applied, the better the tribological properties of Cu nanoparticles are. It can be inferred that a thin copper protective film with lower elastic modulus and hardness is formed on the worn surface, which results in the good tribological performances of Cu nanoparticles, especially when the oil temperature is higher.展开更多
To enhance the lubricating and extreme pressure(EP) performance of base oils, two types of oil-soluble ionic liquids(ILs) with similar anion albeit dissimilar cations were synthesized. The physical properties of the p...To enhance the lubricating and extreme pressure(EP) performance of base oils, two types of oil-soluble ionic liquids(ILs) with similar anion albeit dissimilar cations were synthesized. The physical properties of the prepared ILs were measured. The anticorrosion properties of ILs were assessed by conducting corrosion tests on steel discs and copper strips, which revealed the remarkable anticorrosion properties of the ILs in comparison with those of the commercial additive zinc dialkyldithiophosphate(ZDDP). The tribological properties of the two ILs as additives for poly-α-olefin-10(PAO10) with various mass concentrations were investigated. The tribological test results indicate that these ILs as additives are capable of reducing friction and wear of sliding contacts remarkably as well as enhance the EP performance of blank PAO10. Under similar test conditions, these IL additives exhibit higher lubricating and anti-wear(AW) performances than those of ZDDP based additive package in PAO10. Subsequently, X-ray photoelectron spectroscopy(XPS) and energy dispersive spectrometer(EDS) were conducted to study the lubricating mechanism of the two ILs. The results indicate that the formation of tribochemical film plays the most crucial role in enhancing the lubricating and AW behavior of the mixture lubricants.展开更多
Silver based composites containing different amounts of WS2were prepared by hot-pressing method and their tribologicalbehaviors were investigated against coin silver under humid air,dry nitrogen and vacuum on a ball-o...Silver based composites containing different amounts of WS2were prepared by hot-pressing method and their tribologicalbehaviors were investigated against coin silver under humid air,dry nitrogen and vacuum on a ball-on-disk tester with normal load of5N.The components of composites,microstructure of debris and worn surface were characterized using XRD SEM,EDS and XPS.It is demonstrated that environmental conditions significantly affect the tribological behavior of silver based composites.The frictioncoefficient is the highest in humid air,and the lowest in dry nitrogen.It is found that the friction and wear behavior of the compositesare strongly depended on the characteristics of the lubrication film forming in different operating environments,such as thicknessand composition.In addition,it is indicated that the dominant wear mechanisms of silver based composites are abrasive wear anddelamination under different conditions.展开更多
基金Project(2007CB607601) supported by the National Basic Research Program of ChinaProject(50735006) supported by the National Natural Science Foundation of China+1 种基金Project(9140C8502010702) supported by the National Key Laboratory for Remanufacturing FoundationProject(9140A27030206OC8501) supported by the Key Program for Pre-research of Chinese Government
文摘Wear and friction properties of surface modified Cu nanoparticles as 50CC oil additive were studied. The effect of temperature on tribological properties of Cu nanoparticles was investigated on a four-ball tester. The morphologies, typical element distribution and chemical states of the worn surfaces were characterized by SEM, EDS and XPS, respectively. In order to further investigate the tribological mechanism of Cu nanoparticles, a nano-indentation tester was utilized to measure the micro mechanical properties of the worn surface. The results indicate that the higher the oil temperature applied, the better the tribological properties of Cu nanoparticles are. It can be inferred that a thin copper protective film with lower elastic modulus and hardness is formed on the worn surface, which results in the good tribological performances of Cu nanoparticles, especially when the oil temperature is higher.
基金the financial support from the National Natural Science Foundation of China (NSFC,Nos.51675512,51227804,and 51305428)Natural Science Foundation of Gansu Province (No.1606RJZA051)the National Key Basic Research and Development (973) Program of China (No.2013CB632301)
文摘To enhance the lubricating and extreme pressure(EP) performance of base oils, two types of oil-soluble ionic liquids(ILs) with similar anion albeit dissimilar cations were synthesized. The physical properties of the prepared ILs were measured. The anticorrosion properties of ILs were assessed by conducting corrosion tests on steel discs and copper strips, which revealed the remarkable anticorrosion properties of the ILs in comparison with those of the commercial additive zinc dialkyldithiophosphate(ZDDP). The tribological properties of the two ILs as additives for poly-α-olefin-10(PAO10) with various mass concentrations were investigated. The tribological test results indicate that these ILs as additives are capable of reducing friction and wear of sliding contacts remarkably as well as enhance the EP performance of blank PAO10. Under similar test conditions, these IL additives exhibit higher lubricating and anti-wear(AW) performances than those of ZDDP based additive package in PAO10. Subsequently, X-ray photoelectron spectroscopy(XPS) and energy dispersive spectrometer(EDS) were conducted to study the lubricating mechanism of the two ILs. The results indicate that the formation of tribochemical film plays the most crucial role in enhancing the lubricating and AW behavior of the mixture lubricants.
文摘Silver based composites containing different amounts of WS2were prepared by hot-pressing method and their tribologicalbehaviors were investigated against coin silver under humid air,dry nitrogen and vacuum on a ball-on-disk tester with normal load of5N.The components of composites,microstructure of debris and worn surface were characterized using XRD SEM,EDS and XPS.It is demonstrated that environmental conditions significantly affect the tribological behavior of silver based composites.The frictioncoefficient is the highest in humid air,and the lowest in dry nitrogen.It is found that the friction and wear behavior of the compositesare strongly depended on the characteristics of the lubrication film forming in different operating environments,such as thicknessand composition.In addition,it is indicated that the dominant wear mechanisms of silver based composites are abrasive wear anddelamination under different conditions.