Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results...Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results,we present numerical simulations on CO_(2)breakthrough pressure in unsaturated low-permeability rock under 9 multiple P-T conditions(which can keep CO_(2)in gaseous,liquid and supercritical states)and thus,a numerical method which can be used to accurately predict CO_(2)breakthrough pressure on rock-core scale is proposed.The simulation results show that CO_(2)breakthrough pressure and breakthrough time are exponential correlated with P-T conditions.Meanwhile,pressure has stronger effects on experimental results than that of temperature.Moreover,we performed sensitivity studies on the pore distribution indexλ(0.6,0.7,0.8,and 0.9)in van Genuchten-Muale model.Results show that with the increase ofλ,CO_(2)breakthrough pressure and breakthrough time both show decreasing trends.In other words,the larger the value ofλis,the better the permeability of the caprock is,and the worse the CO_(2)sealing capacity is.The numerical method established in this study can provide an important reference for the prediction of gas breakthrough pressure on rock-core scale and for related numerical studies.展开更多
基金supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021010)funded by the National Natural Science Foundation of China(Grant No.41702251 and 42141010)the MOE Key Laboratory of Groundwater Circulation and Environmental Evolution。
文摘Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results,we present numerical simulations on CO_(2)breakthrough pressure in unsaturated low-permeability rock under 9 multiple P-T conditions(which can keep CO_(2)in gaseous,liquid and supercritical states)and thus,a numerical method which can be used to accurately predict CO_(2)breakthrough pressure on rock-core scale is proposed.The simulation results show that CO_(2)breakthrough pressure and breakthrough time are exponential correlated with P-T conditions.Meanwhile,pressure has stronger effects on experimental results than that of temperature.Moreover,we performed sensitivity studies on the pore distribution indexλ(0.6,0.7,0.8,and 0.9)in van Genuchten-Muale model.Results show that with the increase ofλ,CO_(2)breakthrough pressure and breakthrough time both show decreasing trends.In other words,the larger the value ofλis,the better the permeability of the caprock is,and the worse the CO_(2)sealing capacity is.The numerical method established in this study can provide an important reference for the prediction of gas breakthrough pressure on rock-core scale and for related numerical studies.