The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rai...The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rainstorm processes.It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation(QBWO)during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu,a northward shift and stagnation of the rainbelt,and the occurrence and persistence of heavy rainstorm processes.Correspondingly,during the mei-yu season,the monsoon circulation subsystems,including the western Pacific subtropical high(WPSH),the upper-level East Asian westerly jet,and the low-level southwesterly jet,experienced periodic oscillations linked with the QBWO.Most notably,the repeated establishment of a large southerly center,with relatively stable latitude,led to moisture convergence and ascent which was observed to develop repeatedly.This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes.Moreover,two blocking highs were present in the middle to high latitudes over Eurasia,and a trough along the East Asian coast was also active,which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths.The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV.The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH,which was observed to be favorable for excessive rainfall over YHRV.展开更多
利用风廓线雷达高时空分辨率资料,对2012年4月在广州出现两次暴雨期间低空流场的主要特征进行了分析。结果表明:(1)在暴雨发生前,动量由高空迅速下传,且不断增强,使得强风速不断下传,导致低空急流的建立及增强,从而使得上下层垂直风切...利用风廓线雷达高时空分辨率资料,对2012年4月在广州出现两次暴雨期间低空流场的主要特征进行了分析。结果表明:(1)在暴雨发生前,动量由高空迅速下传,且不断增强,使得强风速不断下传,导致低空急流的建立及增强,从而使得上下层垂直风切变增大,正涡度环流加强,为暴雨的产生提供了很好的动力条件,当伴随有西南暖湿气流输送的水汽条件时,触发了暴雨的产生;(2)低空急流指数I值的脉动与强降水的发生有密切关系,在每次强降水发生前1~2 h I值都会迅速增大,强降水发生后I值迅速减小;(3)低层风场垂直切变增强以及出现极值的时间与急流下传及出现极值的时间具有较好的时间、空间对应关系,说明正是由于低空急流的下传、增强,导致了风场垂直切变的增强,且局部垂直风切变要比平均垂直风切变大得多。展开更多
基金This work was jointly supported by National Key R&D Program of China(2018YFC1505806)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+1 种基金National Science Foundation of China(41875100)the China Meteorological Administration Innovation and Development Project(CXFZ2021Z033),and China Three Gorges Corporation(Grant No.0704181).
文摘The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rainstorm processes.It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation(QBWO)during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu,a northward shift and stagnation of the rainbelt,and the occurrence and persistence of heavy rainstorm processes.Correspondingly,during the mei-yu season,the monsoon circulation subsystems,including the western Pacific subtropical high(WPSH),the upper-level East Asian westerly jet,and the low-level southwesterly jet,experienced periodic oscillations linked with the QBWO.Most notably,the repeated establishment of a large southerly center,with relatively stable latitude,led to moisture convergence and ascent which was observed to develop repeatedly.This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes.Moreover,two blocking highs were present in the middle to high latitudes over Eurasia,and a trough along the East Asian coast was also active,which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths.The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV.The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH,which was observed to be favorable for excessive rainfall over YHRV.
文摘利用风廓线雷达高时空分辨率资料,对2012年4月在广州出现两次暴雨期间低空流场的主要特征进行了分析。结果表明:(1)在暴雨发生前,动量由高空迅速下传,且不断增强,使得强风速不断下传,导致低空急流的建立及增强,从而使得上下层垂直风切变增大,正涡度环流加强,为暴雨的产生提供了很好的动力条件,当伴随有西南暖湿气流输送的水汽条件时,触发了暴雨的产生;(2)低空急流指数I值的脉动与强降水的发生有密切关系,在每次强降水发生前1~2 h I值都会迅速增大,强降水发生后I值迅速减小;(3)低层风场垂直切变增强以及出现极值的时间与急流下传及出现极值的时间具有较好的时间、空间对应关系,说明正是由于低空急流的下传、增强,导致了风场垂直切变的增强,且局部垂直风切变要比平均垂直风切变大得多。