The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-c...The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-cast microstructure was studied. Results show that microstructure of the sample prepared by the LFEHC process was greatly refined. Microstructures at the border and the center of the ingots were fine, uniform and rosette-shaped. Electromagnetic frequency plays a key role in microstructure refining. Fine and uniform microstructures can be obtained with optimal electromagnetic frequency. In this experiment, under a frequency of 30 Hz the microstructure was the finest and the most uniform.展开更多
为了了解电磁场对组织细化作用的机理,采用低频电磁铸造方法制备直径200 mm Al-Zn-Mg-Cu-Zr合金铸锭,并对铸造过程中的温度场进行测量。结果表明:施加磁场产生的强制对流使得温度场均匀且低于液相线约6℃。结晶器中熔体温度场的变化显...为了了解电磁场对组织细化作用的机理,采用低频电磁铸造方法制备直径200 mm Al-Zn-Mg-Cu-Zr合金铸锭,并对铸造过程中的温度场进行测量。结果表明:施加磁场产生的强制对流使得温度场均匀且低于液相线约6℃。结晶器中熔体温度场的变化显著改变了熔体从开始浇注到完全凝固的热历史,从而有效促进了异质形核,显著减少晶核的重熔,使更多晶核能够生存下来,并最终促进形成均匀、细小的微观组织。展开更多
基金National "863" project (NO.2001AA332030) of China
文摘The super high strength aluminum alloy ingots with 100 mm in diameter were cast by the process of low-frequency electromagnetic horizontal continuous casting (LFEHC) and the effect of electromagnetic field on the as-cast microstructure was studied. Results show that microstructure of the sample prepared by the LFEHC process was greatly refined. Microstructures at the border and the center of the ingots were fine, uniform and rosette-shaped. Electromagnetic frequency plays a key role in microstructure refining. Fine and uniform microstructures can be obtained with optimal electromagnetic frequency. In this experiment, under a frequency of 30 Hz the microstructure was the finest and the most uniform.
文摘为了了解电磁场对组织细化作用的机理,采用低频电磁铸造方法制备直径200 mm Al-Zn-Mg-Cu-Zr合金铸锭,并对铸造过程中的温度场进行测量。结果表明:施加磁场产生的强制对流使得温度场均匀且低于液相线约6℃。结晶器中熔体温度场的变化显著改变了熔体从开始浇注到完全凝固的热历史,从而有效促进了异质形核,显著减少晶核的重熔,使更多晶核能够生存下来,并最终促进形成均匀、细小的微观组织。