Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art disp...Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art displays. However, systematic study within this promising research field has remained scarce thus far. Herein, we report the direct growth of graphene on various glasses using a low-temperature plasma-enhanced chemical vapor deposition method. Such a facile and scalable approach guarantees the growth of uniform, transfer-free graphene films on various glass substrates at a growth temperature range of 400-600 ℃. The morphological, surface wetting, optical, and electrical properties of the obtained graphene can be tailored by controlling the growth parameters. Our uniform and high-quality graphene films directly integrated with low-cost, commonly used glasses show great potential in the fabrication of multi-functional electrodes for versatile applications in solar cells, transparent electronics, and smart windows.展开更多
基金Acknowledgements This work was financially supported by the National Basic Research Program of China (Nos. 2013CB932603, 2012CB933404, 2011CB921903, and 2013CB934600), the National Natural Science Foundation of China (Nos. 51432002, 51290272, 51121091, 51~201, and 11222434), the Ministry of Education (No. 20120001130010) and the Beijing Municipal Sdence and Technology Planning Project (No. Z151100003315013).
文摘Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art displays. However, systematic study within this promising research field has remained scarce thus far. Herein, we report the direct growth of graphene on various glasses using a low-temperature plasma-enhanced chemical vapor deposition method. Such a facile and scalable approach guarantees the growth of uniform, transfer-free graphene films on various glass substrates at a growth temperature range of 400-600 ℃. The morphological, surface wetting, optical, and electrical properties of the obtained graphene can be tailored by controlling the growth parameters. Our uniform and high-quality graphene films directly integrated with low-cost, commonly used glasses show great potential in the fabrication of multi-functional electrodes for versatile applications in solar cells, transparent electronics, and smart windows.