Compressed Air Energy Storage(CAES) has tremendous promotional value in the intermittent renewable energy supply systems. CAES has special requirements for compressor(e.g. heavy load, high pressure ratio, wide range)....Compressed Air Energy Storage(CAES) has tremendous promotional value in the intermittent renewable energy supply systems. CAES has special requirements for compressor(e.g. heavy load, high pressure ratio, wide range). With advantages of higher efficiency and wider operation range, IGC(Integrally Geared Compressors) is selected to fulfill the special requirements of the large-scale CAES. To get a better aerodynamic performance, in this paper, based on the analysis of internal flow of centrifugal compressor, a multi-objective one-dimensional optimization design program was put forward combined with modified Two-Zone model and a low solidity vaned diffuser(LSVD) design method. Then, a centrifugal compressor aerodynamic component optimization design system was established with the three-dimensional blade optimization design method based on neural network and genetic optimization algorithm. Then a validation was done by redesigning the Krain-Impeller to get better performance. Finally, the aerodynamic design of the first stage of IGC was completed. The CFD calculation results indicated that the total-to-total pressure ratio of the first stage was 2.51 and the polytropic efficiency was 91.0% at the design point. What’s more, an operation margin and surge margin of the compressor was about 26.5% and 16.4% respectively.展开更多
This paper presents a hydrodynamic redesign of the conventional vaneddiffuser into the low solidity varied diffuser for the maximum static pressure recovery in acentrifugal pump. A Bezier curve representation for prof...This paper presents a hydrodynamic redesign of the conventional vaneddiffuser into the low solidity varied diffuser for the maximum static pressure recovery in acentrifugal pump. A Bezier curve representation for profile description was coupled with ablade-to-blade flow calculation and a real-coded genetic algorithm. A low solidity vaned diffuser of0.89 in solidity was obtained through the present optimum design. Numerical analysis andexperimental test were made to evaluate the hydrodynamic performance of the centrifugal pump withthe designed low solidity vaned diffuser and original vaned diffuser. The obtained resultsdemonstrate that the centrifugal pump with the optimized vaned diffuser has compact size comparedwith the original one while the performance requirements have been met.展开更多
基金This research was supported by the National Key R&D Plan of China (Grant No. 2017YFB0903602)Newton Advanced Fellowship of the Royal Society (Grant No. NA170093)+1 种基金the Transformational Technologies for Clean Energy and Demonstration, Strategic Priority Research Program of CAS (Grant No. XDA21070200)the Frontier Science Research Project of CAS (Grant No. QYZDB-SSW-JSC023).
文摘Compressed Air Energy Storage(CAES) has tremendous promotional value in the intermittent renewable energy supply systems. CAES has special requirements for compressor(e.g. heavy load, high pressure ratio, wide range). With advantages of higher efficiency and wider operation range, IGC(Integrally Geared Compressors) is selected to fulfill the special requirements of the large-scale CAES. To get a better aerodynamic performance, in this paper, based on the analysis of internal flow of centrifugal compressor, a multi-objective one-dimensional optimization design program was put forward combined with modified Two-Zone model and a low solidity vaned diffuser(LSVD) design method. Then, a centrifugal compressor aerodynamic component optimization design system was established with the three-dimensional blade optimization design method based on neural network and genetic optimization algorithm. Then a validation was done by redesigning the Krain-Impeller to get better performance. Finally, the aerodynamic design of the first stage of IGC was completed. The CFD calculation results indicated that the total-to-total pressure ratio of the first stage was 2.51 and the polytropic efficiency was 91.0% at the design point. What’s more, an operation margin and surge margin of the compressor was about 26.5% and 16.4% respectively.
文摘This paper presents a hydrodynamic redesign of the conventional vaneddiffuser into the low solidity varied diffuser for the maximum static pressure recovery in acentrifugal pump. A Bezier curve representation for profile description was coupled with ablade-to-blade flow calculation and a real-coded genetic algorithm. A low solidity vaned diffuser of0.89 in solidity was obtained through the present optimum design. Numerical analysis andexperimental test were made to evaluate the hydrodynamic performance of the centrifugal pump withthe designed low solidity vaned diffuser and original vaned diffuser. The obtained resultsdemonstrate that the centrifugal pump with the optimized vaned diffuser has compact size comparedwith the original one while the performance requirements have been met.