Low carbon steels are characterized by good weldability,formability and fracture toughness properties.However,the low strength levels of these steel grades limit their wide applications.On the other hand,increasing th...Low carbon steels are characterized by good weldability,formability and fracture toughness properties.However,the low strength levels of these steel grades limit their wide applications.On the other hand,increasing the strength by increasing the carbon content and alloying elements deteriorates the other properties.In this study,the microalloying technique was used to examine the possibility of attaining low carbon steels with good combination of strength,ductility and impact properties.A low carbon steel microalloyed with single addition of vanadium and another one microalloyed with combined addition of vanadium and titanium were used in this investigation and their properties were compared with non-microalloyed low carbon steel having the same base composition.Furthermore,other two nonmicroalloyed and V-microalloyed steels with higher carbon,silicon and manganese contents were also investigated to reveal the effect of base composition.Tensile,hardness,room and zero temperature Charpy V-notch impact tests were conducted to evaluate the variations in the mechanical properties of low carbon hot forged steel containing vanadium and combinations of vanadium and titanium.In addition,the microstructures of the different investigated steels were observed using both optical microscope and scanning electron microscope.Furthermore,the hardness of the ferrite phase was also determined using micro-hardness technique.The results showed improvement of the mechanical properties of the investigated steels by both single V-and combined V + Ti-microadditions.Tensile,hardness and impact tests results indicated that good combinations of strength,ductility and impact properties can be achieved by V-microalloying addition.Steel with combination of V and Ti microaddition has much higher hardness,yield strength,ultimate tensile strength and impact energy at both room and zero temperatures compared with non-microalloyed and single Vmicroalloyed steels.Higher C,Si and Mn contents result in increasing the strength accompanied with decreas展开更多
The energy absorption properties of MWK fabric reinforced composite plates were studied. Low velocity and low energy impact experiments were carried out for MWK fabric reinforced Glassfibre/Epoxy composite plate, by s...The energy absorption properties of MWK fabric reinforced composite plates were studied. Low velocity and low energy impact experiments were carried out for MWK fabric reinforced Glassfibre/Epoxy composite plate, by setting up a drop weight impact test system. Using this system, the drop weight velocity during impacting was obtained and recorded by transducer and corresponding signal processing system. Based on the velocity record, the impact energy and dissipated impact energy (energy absorption) were obtained. The influences of structure parameters of MWK on the impact behavior and energy absorption properties were then investigated.展开更多
The objective of this study is to examine the effects of cryogenic and aging treatments on the impact strength andmechanical properties of Ti?6Al?4V alloy.To accomplish that objective,cryogenic treatment(CT),aging tre...The objective of this study is to examine the effects of cryogenic and aging treatments on the impact strength andmechanical properties of Ti?6Al?4V alloy.To accomplish that objective,cryogenic treatment(CT),aging treatment(AT)andcryogenic treatment followed by aging treatment(CAT)were conducted on Ti?6Al?4V alloy.Impact tests were performed onheat-treated and untreated samples using different impactor nose geometries(hemispherical,60°and90°conical)to determine theeffect of impactor nose geometry on the damage characteristic.The findings showed that energy absorption increased and areas ofdamage decreased as a result of heat treatment in all treated samples.The highest energy absorption was observed in the CATsamples,due to the increase in energy absorption,the smallest damaged area occurred in the CAT sample,and the largestdeformation was seen in the untreated samples.Additionally,it was seen that the damaged area and deflection were stronglydependent on impactor nose geometry.The maximum deflection and narrowest deformation area were seen with60o conical nosegeometry.The deformation area increased with increasing impactor nose angle.展开更多
文摘Low carbon steels are characterized by good weldability,formability and fracture toughness properties.However,the low strength levels of these steel grades limit their wide applications.On the other hand,increasing the strength by increasing the carbon content and alloying elements deteriorates the other properties.In this study,the microalloying technique was used to examine the possibility of attaining low carbon steels with good combination of strength,ductility and impact properties.A low carbon steel microalloyed with single addition of vanadium and another one microalloyed with combined addition of vanadium and titanium were used in this investigation and their properties were compared with non-microalloyed low carbon steel having the same base composition.Furthermore,other two nonmicroalloyed and V-microalloyed steels with higher carbon,silicon and manganese contents were also investigated to reveal the effect of base composition.Tensile,hardness,room and zero temperature Charpy V-notch impact tests were conducted to evaluate the variations in the mechanical properties of low carbon hot forged steel containing vanadium and combinations of vanadium and titanium.In addition,the microstructures of the different investigated steels were observed using both optical microscope and scanning electron microscope.Furthermore,the hardness of the ferrite phase was also determined using micro-hardness technique.The results showed improvement of the mechanical properties of the investigated steels by both single V-and combined V + Ti-microadditions.Tensile,hardness and impact tests results indicated that good combinations of strength,ductility and impact properties can be achieved by V-microalloying addition.Steel with combination of V and Ti microaddition has much higher hardness,yield strength,ultimate tensile strength and impact energy at both room and zero temperatures compared with non-microalloyed and single Vmicroalloyed steels.Higher C,Si and Mn contents result in increasing the strength accompanied with decreas
文摘The energy absorption properties of MWK fabric reinforced composite plates were studied. Low velocity and low energy impact experiments were carried out for MWK fabric reinforced Glassfibre/Epoxy composite plate, by setting up a drop weight impact test system. Using this system, the drop weight velocity during impacting was obtained and recorded by transducer and corresponding signal processing system. Based on the velocity record, the impact energy and dissipated impact energy (energy absorption) were obtained. The influences of structure parameters of MWK on the impact behavior and energy absorption properties were then investigated.
文摘The objective of this study is to examine the effects of cryogenic and aging treatments on the impact strength andmechanical properties of Ti?6Al?4V alloy.To accomplish that objective,cryogenic treatment(CT),aging treatment(AT)andcryogenic treatment followed by aging treatment(CAT)were conducted on Ti?6Al?4V alloy.Impact tests were performed onheat-treated and untreated samples using different impactor nose geometries(hemispherical,60°and90°conical)to determine theeffect of impactor nose geometry on the damage characteristic.The findings showed that energy absorption increased and areas ofdamage decreased as a result of heat treatment in all treated samples.The highest energy absorption was observed in the CATsamples,due to the increase in energy absorption,the smallest damaged area occurred in the CAT sample,and the largestdeformation was seen in the untreated samples.Additionally,it was seen that the damaged area and deflection were stronglydependent on impactor nose geometry.The maximum deflection and narrowest deformation area were seen with60o conical nosegeometry.The deformation area increased with increasing impactor nose angle.