准确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了LSTM神经网络模型,对电力负荷时序数据进行回归预测。使用某省电力公司电...准确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了LSTM神经网络模型,对电力负荷时序数据进行回归预测。使用某省电力公司电力负荷数据进行模拟仿真,结果表明基于长短期记忆人工神经网络(Long-Short Term Memory,LSTM)的深度学习模型在短期电力负荷预测中可以有效地预测负荷变化。展开更多
针对滑坡演化的动态特性和传统静态预测模型的不足,提出一种基于时间序列与长短时记忆网络(long and short term memory neural network,LSTM)的滑坡位移动态预测模型。该模型首先采用移动平均法将滑坡累积位移分解为趋势项位移和周期...针对滑坡演化的动态特性和传统静态预测模型的不足,提出一种基于时间序列与长短时记忆网络(long and short term memory neural network,LSTM)的滑坡位移动态预测模型。该模型首先采用移动平均法将滑坡累积位移分解为趋势项位移和周期项位移。然后采用多项式函数预测趋势项位移;基于滑坡变形特征与诱发因素的响应分析,建立LSTM模型进行周期项位移预测。最后将各分项位移叠加,即实现滑坡累积位移的预测。以三峡库区典型阶跃型滑坡——白水河滑坡为例,并与支持向量机模型(support vector machine,SVM)进行对比分析。结果表明,与静态模型SVM相比,动态模型LSTM的预测精度较高,在阶跃式变形期的预测优势尤为突出,且不依赖于训练数据时效性的分析。该模型为三峡库区阶跃型滑坡位移预测提供了新的思路和探索。展开更多
提升精细化的光伏预测技术对电力系统的实时调度运行至关重要。它不仅依赖于预测模型的优劣,还依赖于训练样本日与预测日的相似程度。提出一种基于MIE-LSTM的短期光伏功率预测方法。在建立基于互信息熵(Mutual Information Entropy, MIE...提升精细化的光伏预测技术对电力系统的实时调度运行至关重要。它不仅依赖于预测模型的优劣,还依赖于训练样本日与预测日的相似程度。提出一种基于MIE-LSTM的短期光伏功率预测方法。在建立基于互信息熵(Mutual Information Entropy, MIE)的相关性衡量指标基础上,计算出光伏功率与各气象因素间的互信息熵,从而对高维气象数据进行降维处理。然后,利用历史日与预测日多维气象因素间的加权互信息熵筛选出相似日样本。最后,通过长短期记忆(Long-short Term Memory, LSTM)神经网络预测模型训练并建立气象因素与光伏出力之间的映射关系。通过对某实测光伏电站不同天气类型下的发电功率进行预测分析,验证了新方法能够达到理想的预测精度。展开更多
短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollinat...短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollination algorithm,FPA)优化变分模态分解(variational mode decomposition,VMD)和双向长短时记忆(bidirectional long and short time memory,BiLSTM)神经网络的新型两阶段短期电力负荷预测方法。第一阶段首先提出了一种关于分解损失的VMD评价标准,并采用FPA来寻找该标准下分解参数的最优组合,从而降低了经验设置参数的随机性并且减少了分解过程中的信号损失,提高了分解质量;其次针对分解所得的每个子序列分别建立具备双向处理和长期记忆的BiLSTM神经网络,从而可以更好地挖掘负荷数据的过去和未来的深度时序特征。第二阶段综合考虑模态分量以及气象和星期类型等短期因素的影响,建立基于BiLSTM神经网络的误差纠正模型,用以挖掘误差中所包含的隐含信息,从而降低了模型的固有误差。将该文方法应用于美国南部某地区的负荷数据集,最终的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(root mean square error,RMSE)以及R2分别为108.03、1.19%、146.48以及0.9812。随后在冀北电网某供电公司的实际应用中,再次证明了该方法在区域性短期电力负荷预测中的有效性。展开更多
针对滚动轴承存在性能退化渐变故障和突发故障两种模式下的剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出一种结合卷积神经网络(convolution neural networks,简称CNN)和长短时记忆(long short term memory,简称LSTM...针对滚动轴承存在性能退化渐变故障和突发故障两种模式下的剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出一种结合卷积神经网络(convolution neural networks,简称CNN)和长短时记忆(long short term memory,简称LSTM)神经网络的滚动轴承RUL预测方法。首先,对滚动轴承原始振动信号作快速傅里叶变换(fast Fourier transform,简称FFT);其次,将预处理所得到的频域幅值信号进行归一化处理后,将其作为CNN的输入,并利用CNN自适应提取局部内在有用信息,学习并挖掘深层特征,避免传统算法需要专家大量经验的弊端;然后,再将深层特征输入到LSTM网络中,构建趋势性量化健康指标,同时确定失效阈值;最后,运用移动平均法进行平滑处理,消除局部振荡,再利用多项式曲线拟合,预测未来失效时刻,实现滚动轴承RUL预测。实验结果表明,所提方法构建的趋势性量化健康指标在两种故障模式下都具有良好的单调趋势性,预测结果能够较好地接近真实寿命值。展开更多
精确的短期光伏功率区间概率预测可以有效量化光伏功率预测的不确定性,对于新型电力系统运行调度避险至关重要。为了提高模型预测性能,基于气象变量的数据特征提出模糊C均值(fuzzy C-means,FCM)聚类方法,将历史数据集聚类为晴天、晴转...精确的短期光伏功率区间概率预测可以有效量化光伏功率预测的不确定性,对于新型电力系统运行调度避险至关重要。为了提高模型预测性能,基于气象变量的数据特征提出模糊C均值(fuzzy C-means,FCM)聚类方法,将历史数据集聚类为晴天、晴转多云和阴雨天,采用与测试集具有相似天气类型的历史数据作为训练样本训练模型;集合卷积神经网络(convolutional neural network,CNN)模型出色的特征提取优势,双向长短期记忆(bidirectional long short term memory,BiLSTM)神经网络模型擅长双向捕捉长时间序列中长期依赖关系的优势,以及可生成区间预测结果的分位数回归(quantile regression,QR)模型,提出QR-CNN-Bi LSTM深度学习融合模型,计及筛选得到的多种气象因素,对光伏功率进行以5min为间隔的精细时间粒度分类区间预测,最后采用交叉验证和网格搜索方法的核密度估计给出概率密度预测结果。选取多种评价指标对提出的模型进行评价,并与QR-LSTM、QR-BiLSTM模型预测结果做对比分析,结果表明:1)FCM算法能有效实现光伏历史数据集的聚类;2)QR-CNN-BiLSTM融合模型能够生成以5min为间隔的高质量区间预测结果,95%置信预测区间综合评价指标平均值由QR-LSTM、QR-BiLSTM的0.1371、0.1288减小到0.0971;3)基于交叉验证和网格搜索方法的核密度估计能够实现可靠的光伏功率概率密度预测结果生成。展开更多
文摘准确的电力负荷预测可以保证电力供应的稳定,降低用电成本,提高供电质量。在进行短期电力负荷预测时,考虑到时序数据的时间相关性,应用张量流深度学习框架构建了LSTM神经网络模型,对电力负荷时序数据进行回归预测。使用某省电力公司电力负荷数据进行模拟仿真,结果表明基于长短期记忆人工神经网络(Long-Short Term Memory,LSTM)的深度学习模型在短期电力负荷预测中可以有效地预测负荷变化。
文摘针对滑坡演化的动态特性和传统静态预测模型的不足,提出一种基于时间序列与长短时记忆网络(long and short term memory neural network,LSTM)的滑坡位移动态预测模型。该模型首先采用移动平均法将滑坡累积位移分解为趋势项位移和周期项位移。然后采用多项式函数预测趋势项位移;基于滑坡变形特征与诱发因素的响应分析,建立LSTM模型进行周期项位移预测。最后将各分项位移叠加,即实现滑坡累积位移的预测。以三峡库区典型阶跃型滑坡——白水河滑坡为例,并与支持向量机模型(support vector machine,SVM)进行对比分析。结果表明,与静态模型SVM相比,动态模型LSTM的预测精度较高,在阶跃式变形期的预测优势尤为突出,且不依赖于训练数据时效性的分析。该模型为三峡库区阶跃型滑坡位移预测提供了新的思路和探索。
文摘提升精细化的光伏预测技术对电力系统的实时调度运行至关重要。它不仅依赖于预测模型的优劣,还依赖于训练样本日与预测日的相似程度。提出一种基于MIE-LSTM的短期光伏功率预测方法。在建立基于互信息熵(Mutual Information Entropy, MIE)的相关性衡量指标基础上,计算出光伏功率与各气象因素间的互信息熵,从而对高维气象数据进行降维处理。然后,利用历史日与预测日多维气象因素间的加权互信息熵筛选出相似日样本。最后,通过长短期记忆(Long-short Term Memory, LSTM)神经网络预测模型训练并建立气象因素与光伏出力之间的映射关系。通过对某实测光伏电站不同天气类型下的发电功率进行预测分析,验证了新方法能够达到理想的预测精度。
文摘短期电力负荷预测有助于维持发电端和用电端的动态平衡,保障电力系统稳定且高效地运行。分布式能源的大规模并网以及气象和节假日等短期因素的影响,使得负荷序列呈现明显的波动性和非线性。为此,该文提出基于花授粉算法(flower pollination algorithm,FPA)优化变分模态分解(variational mode decomposition,VMD)和双向长短时记忆(bidirectional long and short time memory,BiLSTM)神经网络的新型两阶段短期电力负荷预测方法。第一阶段首先提出了一种关于分解损失的VMD评价标准,并采用FPA来寻找该标准下分解参数的最优组合,从而降低了经验设置参数的随机性并且减少了分解过程中的信号损失,提高了分解质量;其次针对分解所得的每个子序列分别建立具备双向处理和长期记忆的BiLSTM神经网络,从而可以更好地挖掘负荷数据的过去和未来的深度时序特征。第二阶段综合考虑模态分量以及气象和星期类型等短期因素的影响,建立基于BiLSTM神经网络的误差纠正模型,用以挖掘误差中所包含的隐含信息,从而降低了模型的固有误差。将该文方法应用于美国南部某地区的负荷数据集,最终的平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(root mean square error,RMSE)以及R2分别为108.03、1.19%、146.48以及0.9812。随后在冀北电网某供电公司的实际应用中,再次证明了该方法在区域性短期电力负荷预测中的有效性。
文摘针对滚动轴承存在性能退化渐变故障和突发故障两种模式下的剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出一种结合卷积神经网络(convolution neural networks,简称CNN)和长短时记忆(long short term memory,简称LSTM)神经网络的滚动轴承RUL预测方法。首先,对滚动轴承原始振动信号作快速傅里叶变换(fast Fourier transform,简称FFT);其次,将预处理所得到的频域幅值信号进行归一化处理后,将其作为CNN的输入,并利用CNN自适应提取局部内在有用信息,学习并挖掘深层特征,避免传统算法需要专家大量经验的弊端;然后,再将深层特征输入到LSTM网络中,构建趋势性量化健康指标,同时确定失效阈值;最后,运用移动平均法进行平滑处理,消除局部振荡,再利用多项式曲线拟合,预测未来失效时刻,实现滚动轴承RUL预测。实验结果表明,所提方法构建的趋势性量化健康指标在两种故障模式下都具有良好的单调趋势性,预测结果能够较好地接近真实寿命值。
文摘精确的短期光伏功率区间概率预测可以有效量化光伏功率预测的不确定性,对于新型电力系统运行调度避险至关重要。为了提高模型预测性能,基于气象变量的数据特征提出模糊C均值(fuzzy C-means,FCM)聚类方法,将历史数据集聚类为晴天、晴转多云和阴雨天,采用与测试集具有相似天气类型的历史数据作为训练样本训练模型;集合卷积神经网络(convolutional neural network,CNN)模型出色的特征提取优势,双向长短期记忆(bidirectional long short term memory,BiLSTM)神经网络模型擅长双向捕捉长时间序列中长期依赖关系的优势,以及可生成区间预测结果的分位数回归(quantile regression,QR)模型,提出QR-CNN-Bi LSTM深度学习融合模型,计及筛选得到的多种气象因素,对光伏功率进行以5min为间隔的精细时间粒度分类区间预测,最后采用交叉验证和网格搜索方法的核密度估计给出概率密度预测结果。选取多种评价指标对提出的模型进行评价,并与QR-LSTM、QR-BiLSTM模型预测结果做对比分析,结果表明:1)FCM算法能有效实现光伏历史数据集的聚类;2)QR-CNN-BiLSTM融合模型能够生成以5min为间隔的高质量区间预测结果,95%置信预测区间综合评价指标平均值由QR-LSTM、QR-BiLSTM的0.1371、0.1288减小到0.0971;3)基于交叉验证和网格搜索方法的核密度估计能够实现可靠的光伏功率概率密度预测结果生成。