采用XRD、BET、SEM、NH_3-TPD对Pt/Al_2O_3、Pt/Al_2O_3-ZSM-5、Pt/ZSM-5催化剂进行表征,在不同反应工艺条件下考察三种分子筛的酸性、孔径分布、外部形貌、晶体结构对其加氢脱氧性能的影响。结果表明,Br■nsted酸性位点和中孔体积占比...采用XRD、BET、SEM、NH_3-TPD对Pt/Al_2O_3、Pt/Al_2O_3-ZSM-5、Pt/ZSM-5催化剂进行表征,在不同反应工艺条件下考察三种分子筛的酸性、孔径分布、外部形貌、晶体结构对其加氢脱氧性能的影响。结果表明,Br■nsted酸性位点和中孔体积占比对脂肪酸甲酯的加氢脱氧反应来说至关重要,其中,Br■nsted酸性位点在脱氧反应中的C-O键断裂发挥主要作用,中孔孔径则能提高整个反应的质量传递效率以及避免C_(12-18)长链烷烃发生裂解。三种催化剂的加氢脱氧催化效果大小为:Pt/Al_2O_3-ZSM-5>Pt/Al_2O_3>Pt/ZSM-5;适宜的反应工艺条件为:t=350℃,p=2 M Pa,H2/oil=1000,WHSV=0.5 h^(-1),在此条件下Pt/Al_2O_3-ZSM-5的脂肪酸甲酯转化率为99.4%,目标产物液体收率为86.8%。展开更多
The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. Howe...The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. However, few studies have addressed whether the aquatic-derived n-alkanes can affect the δD values of lake sedimentary long-chain n-alkanes, which are usually regarded as a recorder of the terrestrial hydrological signals. Here we systematically investigated δD values of long-chain n-alkanes from modern aquatic plants, both near-shore and off-shore surface sediments, surrounding terrestrial plant litters, as well as river water and lake water in Lake Qinghai and its satellite lakes on the northeastern Qinghai-Tibet Plateau. Our data showed that(i) δD values of long-chain n-alkanes from aquatic plants varied from-184‰ to-132‰ for n-C27, from-183‰ to-138‰ for n-C29, and from-189‰ to-130‰ for n-C31, respectively, with no significant differences among the three n-alkanes homologues;(ii) δD values of long-chain n-alkanes from aquatic plants were generally more positive than those from surrounding terrestrial plants, possibly because that they recorded the D-enrichment of lake water in this semi-arid region;(iii) δD values of long-chain n-alkanes from surface sediments showed significant differences among the three n-alkanes homologues, due to the larger aquatic input of n-C27 to the sedimentary lipid pool than that of n-C31, and(iv) n-C27 δD values of near-shore aquatic plants and near-shore sediments are more negative than those from off-shore as a result of lower δD values of near-shore lake water. Our findings indicate that in this region(i) the offset between sedimentary n-C27 and n-C31 δD values(ΔδDC27-C31) could potentially be used to evaluate if sedimentary long-chain n-alkanes are derived from a single source;(ii) while δD values of n-C27 may be influenced by lake water hydrological changes, sedimentary n-C31 is derived predominantly from terrestrial plants and thus its δD can 展开更多
The molecular distribution of long-chain n-alkanes in 62 soil samples collected from diverse locations across eastern China was analyzed.The long-chain n-alkanes were mostly dominated by n-C29 or n-C31,regardless of t...The molecular distribution of long-chain n-alkanes in 62 soil samples collected from diverse locations across eastern China was analyzed.The long-chain n-alkanes were mostly dominated by n-C29 or n-C31,regardless of the overlying vegetation type at each site.The results were compared with those summarized from the literature,covering more than 100 soil samples within China and more than 300 genera of modern plants distributed worldwide.There were similar n-alkane distribution patterns for most genera, with no clear differences among grasses,shrubs,and trees.The evidence from analyses of surface soils and modern plants indicates that the relationship between the molecular distribution of long-chain n-alkanes of surface soils and source vegetation is highly complex,and is influenced by many factors.Further,it is suggested that source vegetation types should not be simply inferred from distribution patterns of long-chain n-alkanes in sediments.展开更多
文摘采用XRD、BET、SEM、NH_3-TPD对Pt/Al_2O_3、Pt/Al_2O_3-ZSM-5、Pt/ZSM-5催化剂进行表征,在不同反应工艺条件下考察三种分子筛的酸性、孔径分布、外部形貌、晶体结构对其加氢脱氧性能的影响。结果表明,Br■nsted酸性位点和中孔体积占比对脂肪酸甲酯的加氢脱氧反应来说至关重要,其中,Br■nsted酸性位点在脱氧反应中的C-O键断裂发挥主要作用,中孔孔径则能提高整个反应的质量传递效率以及避免C_(12-18)长链烷烃发生裂解。三种催化剂的加氢脱氧催化效果大小为:Pt/Al_2O_3-ZSM-5>Pt/Al_2O_3>Pt/ZSM-5;适宜的反应工艺条件为:t=350℃,p=2 M Pa,H2/oil=1000,WHSV=0.5 h^(-1),在此条件下Pt/Al_2O_3-ZSM-5的脂肪酸甲酯转化率为99.4%,目标产物液体收率为86.8%。
基金supported by the National Natural Science Foundation of China (Grant No. 41573005)the National Basic Research Program of China (Grant No. 2013CB955901)
文摘The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. However, few studies have addressed whether the aquatic-derived n-alkanes can affect the δD values of lake sedimentary long-chain n-alkanes, which are usually regarded as a recorder of the terrestrial hydrological signals. Here we systematically investigated δD values of long-chain n-alkanes from modern aquatic plants, both near-shore and off-shore surface sediments, surrounding terrestrial plant litters, as well as river water and lake water in Lake Qinghai and its satellite lakes on the northeastern Qinghai-Tibet Plateau. Our data showed that(i) δD values of long-chain n-alkanes from aquatic plants varied from-184‰ to-132‰ for n-C27, from-183‰ to-138‰ for n-C29, and from-189‰ to-130‰ for n-C31, respectively, with no significant differences among the three n-alkanes homologues;(ii) δD values of long-chain n-alkanes from aquatic plants were generally more positive than those from surrounding terrestrial plants, possibly because that they recorded the D-enrichment of lake water in this semi-arid region;(iii) δD values of long-chain n-alkanes from surface sediments showed significant differences among the three n-alkanes homologues, due to the larger aquatic input of n-C27 to the sedimentary lipid pool than that of n-C31, and(iv) n-C27 δD values of near-shore aquatic plants and near-shore sediments are more negative than those from off-shore as a result of lower δD values of near-shore lake water. Our findings indicate that in this region(i) the offset between sedimentary n-C27 and n-C31 δD values(ΔδDC27-C31) could potentially be used to evaluate if sedimentary long-chain n-alkanes are derived from a single source;(ii) while δD values of n-C27 may be influenced by lake water hydrological changes, sedimentary n-C31 is derived predominantly from terrestrial plants and thus its δD can
基金supported by the National Natural Science Foundation of China (40901055)the Key Project of the Chinese Ministry of Education (109151)+2 种基金the Fund for Creative Research Groups (41021091)the Cross-discipline Innovative Study Fund for Youth Talent of Lanzhou University (LZUJC2007011)the National Basic Research Program of China (2010CB950202 and 2010CB833405)
文摘The molecular distribution of long-chain n-alkanes in 62 soil samples collected from diverse locations across eastern China was analyzed.The long-chain n-alkanes were mostly dominated by n-C29 or n-C31,regardless of the overlying vegetation type at each site.The results were compared with those summarized from the literature,covering more than 100 soil samples within China and more than 300 genera of modern plants distributed worldwide.There were similar n-alkane distribution patterns for most genera, with no clear differences among grasses,shrubs,and trees.The evidence from analyses of surface soils and modern plants indicates that the relationship between the molecular distribution of long-chain n-alkanes of surface soils and source vegetation is highly complex,and is influenced by many factors.Further,it is suggested that source vegetation types should not be simply inferred from distribution patterns of long-chain n-alkanes in sediments.