As powerful torque amplification actuators, control moment gyros (CMGs) are often used in the attitude control of many state-of-the-art high resolution satellites. However, the distur- bance generated by the CMGs ca...As powerful torque amplification actuators, control moment gyros (CMGs) are often used in the attitude control of many state-of-the-art high resolution satellites. However, the distur- bance generated by the CMGs can not only reduce the attitude stability of a satellite but also dete- riorate the performance of optic payloads. Currently, CMG vibration isolators are widely used to target this problem. The isolators can affect the singularity of the CMG system as they are placed between the CMGs and the satellite bus and provide additional freedoms to the CMG system due to their flexibility. The formulation of the output torque of a CMG is studied first considering the dynamic imbalance of its spin rotor and then the deformation angle as a result of the isolator's flex- ibility is calculated. With the additional freedoms, the influence of isolator on the singularity problem is studied and a new steering logic to escape from the singular states is proposed.展开更多
基金sponsored by the National Natural Science Foundation of China(No.11272172)
文摘As powerful torque amplification actuators, control moment gyros (CMGs) are often used in the attitude control of many state-of-the-art high resolution satellites. However, the distur- bance generated by the CMGs can not only reduce the attitude stability of a satellite but also dete- riorate the performance of optic payloads. Currently, CMG vibration isolators are widely used to target this problem. The isolators can affect the singularity of the CMG system as they are placed between the CMGs and the satellite bus and provide additional freedoms to the CMG system due to their flexibility. The formulation of the output torque of a CMG is studied first considering the dynamic imbalance of its spin rotor and then the deformation angle as a result of the isolator's flex- ibility is calculated. With the additional freedoms, the influence of isolator on the singularity problem is studied and a new steering logic to escape from the singular states is proposed.