Atmospheric electricity research has been conducted actively in China,having profited from the development and application of high temporal and spatial resolution lightning detection and location technologies.This pap...Atmospheric electricity research has been conducted actively in China,having profited from the development and application of high temporal and spatial resolution lightning detection and location technologies.This paper reviews the scientific advances made in the field of atmospheric electricity in China from 2011 to 2018,covering the following five aspects:(1)lightning detection and location techniques;(2)discharge processes and parameters associated with rocket-triggered lightning;(3)physical processes in natural lightning and attachment to the ground;(4)lightning activities and charge structure in different thunderstorms;and(5)effects of thunderstorms on the upper atmosphere.In addition,some outstanding questions for future research are outlined.展开更多
The importance of atmospheric electricity research has been increasingly recognized in recent decades. Research on atmospheric electricity has been actively conducted since the 1980 s in China. Lightning physics and i...The importance of atmospheric electricity research has been increasingly recognized in recent decades. Research on atmospheric electricity has been actively conducted since the 1980 s in China. Lightning physics and its effects, as important branches of atmospheric electricity, have received more attention because of their significance both in scientific research and lightning protection applications. This paper reviews atmospheric electricity research based primarily on ground-based field experiments at different regions in China in the last decade. The results described in this review include physics and effects of lightning, rocket-triggered lightning and its physical processes of discharge, thunderstorm electricity on the Tibetan Plateau and its surrounding areas, lightning activity associated with severe convective storms, the effect and response of lightning to climate change, numerical simulation of thunderstorm electrification and lightning discharge, lightning detection and location techniques, and transient luminous events above thunderstorms.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41630425)the National Key Basic Research Program of China(Grant No.2014CB441401)
文摘Atmospheric electricity research has been conducted actively in China,having profited from the development and application of high temporal and spatial resolution lightning detection and location technologies.This paper reviews the scientific advances made in the field of atmospheric electricity in China from 2011 to 2018,covering the following five aspects:(1)lightning detection and location techniques;(2)discharge processes and parameters associated with rocket-triggered lightning;(3)physical processes in natural lightning and attachment to the ground;(4)lightning activities and charge structure in different thunderstorms;and(5)effects of thunderstorms on the upper atmosphere.In addition,some outstanding questions for future research are outlined.
基金supported by the National Key Basic Research and Development (973) Program of China (2014CB441400)the National Natural Science Foundation of China (Grant No. 41475002)
文摘The importance of atmospheric electricity research has been increasingly recognized in recent decades. Research on atmospheric electricity has been actively conducted since the 1980 s in China. Lightning physics and its effects, as important branches of atmospheric electricity, have received more attention because of their significance both in scientific research and lightning protection applications. This paper reviews atmospheric electricity research based primarily on ground-based field experiments at different regions in China in the last decade. The results described in this review include physics and effects of lightning, rocket-triggered lightning and its physical processes of discharge, thunderstorm electricity on the Tibetan Plateau and its surrounding areas, lightning activity associated with severe convective storms, the effect and response of lightning to climate change, numerical simulation of thunderstorm electrification and lightning discharge, lightning detection and location techniques, and transient luminous events above thunderstorms.