对于遥感载荷技术指标差异、观测角度、时相、地形起伏等内外部因素造成的几何畸变,采用全局配准方法制约着影像配准和变化检测精度的提高。提出一种基于加速抗差特征(speed up robust feature,SURF)算法的全局匹配和像元局部配准模...对于遥感载荷技术指标差异、观测角度、时相、地形起伏等内外部因素造成的几何畸变,采用全局配准方法制约着影像配准和变化检测精度的提高。提出一种基于加速抗差特征(speed up robust feature,SURF)算法的全局匹配和像元局部配准模型相结合的弹性配准方法,以不同时相遥感影像的差值特征影像各像元正态分布密度函数构建像元局部参数解算权重,缓减不同时相影像中辐射亮度差异较大的像元对局部配准模型参数解算的影响,采用城市典型区域遥感影像进行实验,结果表明该方法影像配准精度(包括地形起伏区域)优于1个像元,弹性配准算法的适用性和运算速度有一定的提高。展开更多
目的探索基于条件期望的函数型主成分分析方法(principal analysis by conditional expectation,PACE)在稀疏且不规则的纵向数据中的预测效果,评价其揭示总体变化趋势、个体特异的变异方式以及预测个体纵向变化轨迹的能力。方法采用R软...目的探索基于条件期望的函数型主成分分析方法(principal analysis by conditional expectation,PACE)在稀疏且不规则的纵向数据中的预测效果,评价其揭示总体变化趋势、个体特异的变异方式以及预测个体纵向变化轨迹的能力。方法采用R软件模拟生成样本量为200的三种不同稀疏情形的纵向数据集,通过数值模拟定量地评价PACE方法的降维及预测效果。结果根据累计方差贡献率达到85%,三种不同稀疏情形的纵向数据集最终选取的主成分个数分别为4、4、3,PACE方法在不同稀疏情形下预测结果均具有较小的均方误差(MSE),分别为0.1410、0.0670、0.0161,而且观测点个数越多预测效果越好。结论PACE方法可以实现在随访间隔不规则且数据稀疏的情况下,捕获纵向数据随时间变化的总体趋势,揭示个体特异的变异方式,预测个体的纵向轨迹。展开更多
全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全...全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全氮含量的适用性。结果表明,LWR模型的预测效果优于偏最小二乘回归(PLSR)、人工神经网络(ANN)和支持向量机(SVM),选取主成分数为5,相似样本为40时,模型验证的决定系数(RP2)为0.83,均方根误差(RMSEP)为0.25 g kg-1,测定值标准偏差与标准预测误差的比值(RPD)达到2.41。LWR从建模集中选取与验证样本相似的土样作为局部建模样本,降低了差别大的样本对模型的干扰,从而提高了模型的预测能力。因此,LWR建模方法通过大范围、大样本土壤光谱数据进行大尺度区域的全氮等土壤属性预测时能够发挥更好的作用。展开更多
Some fundamental issues on statistical inferences relating to varying-coefficient regression models are addressed and studied. An exact testing procedure is proposed for checking the goodness of fit of a varying-coeff...Some fundamental issues on statistical inferences relating to varying-coefficient regression models are addressed and studied. An exact testing procedure is proposed for checking the goodness of fit of a varying-coefficient model fited by the locally weighted regression technique versus an ordinary linear regression model. Also, an appropriate statistic for testing variation of model parameters over the locations where the observations are collected is constructed and a formal testing approach which is essential to exploring spatial non-stationarity in geography science is suggested.展开更多
Unlike the traditional fossil energy, wind, as the clean renewable energy, can reduce the emission of the greenhouse gas. To take full advantage of the environmental benefits of wind energy, wind power forecasting has...Unlike the traditional fossil energy, wind, as the clean renewable energy, can reduce the emission of the greenhouse gas. To take full advantage of the environmental benefits of wind energy, wind power forecasting has to be studied to overcome the troubles brought by the variable nature of wind. Power forecasting for regional wind farm groups is the problem that many power system operators care about. The high-dimensional feature sets with redundant information are frequently encountered when dealing with this problem. In this paper, two kinds of feature set construction methods are proposed which can achieve the proper feature set either by selecting the subsets or by transforming the original variables with specific combinations. The former method selects the subset according to the criterion of minimal-redundancy-maximal-relevance (mRMR), while the latter does so based on the method of principal component analysis (PCA). A locally weighted learning method is also proposed to utilize the processed feature set to produce the power forecast results. The proposed model is simple and easy to use with parameters optimized automatically. Finally, a case study of 28 wind farms in East China is provided to verify the effectiveness of the proposed method.展开更多
射频识别技术(radio frequency identification,RFID)以其非接触、非视距、低成本及高精度等优点成为室内定位技术的研究热点.为了加强信号稳定性并提高实时性,该文用流水线方式接收到的包信息作为定位信号参数,针对室内环境对信号传播...射频识别技术(radio frequency identification,RFID)以其非接触、非视距、低成本及高精度等优点成为室内定位技术的研究热点.为了加强信号稳定性并提高实时性,该文用流水线方式接收到的包信息作为定位信号参数,针对室内环境对信号传播影响的复杂性,提出了流水线型局部加权回归定位算法,将室内环境对信号传播到各位置的影响融合进算法,以实现精确定位.实验表明,对于室内定位,所提出的基于RFID技术的流水线型局部加权回归定位算法相对于经典的LANDMARK算法和VIRE算法,定位精度分别提高56.56%和36.73%.在多目标的情况下,也可以实现实时精确的定位跟踪,具有良好的实用价值和应用前景.展开更多
文摘对于遥感载荷技术指标差异、观测角度、时相、地形起伏等内外部因素造成的几何畸变,采用全局配准方法制约着影像配准和变化检测精度的提高。提出一种基于加速抗差特征(speed up robust feature,SURF)算法的全局匹配和像元局部配准模型相结合的弹性配准方法,以不同时相遥感影像的差值特征影像各像元正态分布密度函数构建像元局部参数解算权重,缓减不同时相影像中辐射亮度差异较大的像元对局部配准模型参数解算的影响,采用城市典型区域遥感影像进行实验,结果表明该方法影像配准精度(包括地形起伏区域)优于1个像元,弹性配准算法的适用性和运算速度有一定的提高。
文摘目的探索基于条件期望的函数型主成分分析方法(principal analysis by conditional expectation,PACE)在稀疏且不规则的纵向数据中的预测效果,评价其揭示总体变化趋势、个体特异的变异方式以及预测个体纵向变化轨迹的能力。方法采用R软件模拟生成样本量为200的三种不同稀疏情形的纵向数据集,通过数值模拟定量地评价PACE方法的降维及预测效果。结果根据累计方差贡献率达到85%,三种不同稀疏情形的纵向数据集最终选取的主成分个数分别为4、4、3,PACE方法在不同稀疏情形下预测结果均具有较小的均方误差(MSE),分别为0.1410、0.0670、0.0161,而且观测点个数越多预测效果越好。结论PACE方法可以实现在随访间隔不规则且数据稀疏的情况下,捕获纵向数据随时间变化的总体趋势,揭示个体特异的变异方式,预测个体的纵向轨迹。
文摘全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全氮含量的适用性。结果表明,LWR模型的预测效果优于偏最小二乘回归(PLSR)、人工神经网络(ANN)和支持向量机(SVM),选取主成分数为5,相似样本为40时,模型验证的决定系数(RP2)为0.83,均方根误差(RMSEP)为0.25 g kg-1,测定值标准偏差与标准预测误差的比值(RPD)达到2.41。LWR从建模集中选取与验证样本相似的土样作为局部建模样本,降低了差别大的样本对模型的干扰,从而提高了模型的预测能力。因此,LWR建模方法通过大范围、大样本土壤光谱数据进行大尺度区域的全氮等土壤属性预测时能够发挥更好的作用。
基金the National Natural Science Foundation of China (No.60075001) and Xi'anJiaotong University Natural Science Foundation.
文摘Some fundamental issues on statistical inferences relating to varying-coefficient regression models are addressed and studied. An exact testing procedure is proposed for checking the goodness of fit of a varying-coefficient model fited by the locally weighted regression technique versus an ordinary linear regression model. Also, an appropriate statistic for testing variation of model parameters over the locations where the observations are collected is constructed and a formal testing approach which is essential to exploring spatial non-stationarity in geography science is suggested.
文摘Unlike the traditional fossil energy, wind, as the clean renewable energy, can reduce the emission of the greenhouse gas. To take full advantage of the environmental benefits of wind energy, wind power forecasting has to be studied to overcome the troubles brought by the variable nature of wind. Power forecasting for regional wind farm groups is the problem that many power system operators care about. The high-dimensional feature sets with redundant information are frequently encountered when dealing with this problem. In this paper, two kinds of feature set construction methods are proposed which can achieve the proper feature set either by selecting the subsets or by transforming the original variables with specific combinations. The former method selects the subset according to the criterion of minimal-redundancy-maximal-relevance (mRMR), while the latter does so based on the method of principal component analysis (PCA). A locally weighted learning method is also proposed to utilize the processed feature set to produce the power forecast results. The proposed model is simple and easy to use with parameters optimized automatically. Finally, a case study of 28 wind farms in East China is provided to verify the effectiveness of the proposed method.
文摘射频识别技术(radio frequency identification,RFID)以其非接触、非视距、低成本及高精度等优点成为室内定位技术的研究热点.为了加强信号稳定性并提高实时性,该文用流水线方式接收到的包信息作为定位信号参数,针对室内环境对信号传播影响的复杂性,提出了流水线型局部加权回归定位算法,将室内环境对信号传播到各位置的影响融合进算法,以实现精确定位.实验表明,对于室内定位,所提出的基于RFID技术的流水线型局部加权回归定位算法相对于经典的LANDMARK算法和VIRE算法,定位精度分别提高56.56%和36.73%.在多目标的情况下,也可以实现实时精确的定位跟踪,具有良好的实用价值和应用前景.