期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LECA的多工况过程故障检测方法 被引量:12
1
作者 钟娜 邓晓刚 徐莹 《化工学报》 EI CAS CSCD 北大核心 2015年第12期4929-4940,共12页
针对工业过程监控中的多工况复杂分布数据,提出一种基于局部熵成分分析(LECA)的故障检测方法。为处理数据的多模态分布问题,LECA首先采用KNN-Parzen窗方法估计变量的局部概率密度,进一步构造局部相对概率密度函数降低对窗参数选择的敏... 针对工业过程监控中的多工况复杂分布数据,提出一种基于局部熵成分分析(LECA)的故障检测方法。为处理数据的多模态分布问题,LECA首先采用KNN-Parzen窗方法估计变量的局部概率密度,进一步构造局部相对概率密度函数降低对窗参数选择的敏感性。为有效挖掘非高斯分布数据中的特征信息,利用信息熵理论计算过程数据的局部信息熵,并采用独立元分析(ICA)方法建立局部熵成分统计模型,实时检测过程故障。在数值例子和连续搅拌反应釜(CSTR)上的仿真结果表明,该方法在故障检测过程中能够获得较好的监控性能。 展开更多
关键词 故障检测 多工况过程 局部相对概率密度估计 信息熵 独立元分析算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部