In this paper, the evolution of intraseasonal oscillation over the South China Sea and tropical western Pacific area and its effect to the summer rainfall in the southern China are studied based on the ECMWF data and ...In this paper, the evolution of intraseasonal oscillation over the South China Sea and tropical western Pacific area and its effect to the summer rainfall in the southern China are studied based on the ECMWF data and TBB data) analyses. A very low-frequency waves exist in the tropics and play an important role in dominating intraseasonal oscillation and lead to special seasonal variation of intraseasonal oscillation over the South China Sea/tropical western Pacific area. The intraseasonal oscillation (convection) over the South China Sea and tropical western Pacific area is closely related to the summer rainfall (convection) in the southern China. Their relationship seems to be a seesaw feature, and this relationship resulting from the different pattern of convection in those two regions is caused by the differnt type of local meridional circulation.展开更多
The formation and evolution of permafrost in China during the last 20 ka were reconstructed on the basis of large amount of paleo-permafrost remains and paleo-periglacial evidence, as well as paleo-glacial landforms, ...The formation and evolution of permafrost in China during the last 20 ka were reconstructed on the basis of large amount of paleo-permafrost remains and paleo-periglacial evidence, as well as paleo-glacial landforms, paleo-flora and paleofauna records. The results indicate that, during the local Last Glacial Maximum(LLGM) or local Last Permafrost Maximum(LLPMax), the extent of permafrost of China reached 5.3×106-5.4×106 km2, or thrice that of today, but permafrost shrank to only0.80×106-0.85×106 km2, or 50% that of present, during the local Holocene Megathermal Period(LHMP), or the local Last Permafrost Minimum(LLPMin). On the basis of the dating of periglacial remains and their distributive features, the extent of permafrost in China was delineated for the two periods of LLGM(LLPMax) and LHMP(LLPMin), and the evolution of permafrost in China was divided into seven periods as follows:(1) LLGM in Late Pleistocene(ca. 20000 to 13000-10800 a BP)with extensive evidence for the presence of intensive ice-wedge expansion for outlining its LLPMax extent;(2) A period of dramatically changing climate during the early Holocene(10800 to 8500-7000 a BP) when permafrost remained relatively stable but with a general trend of shrinking areal extent;(3) The LHMP in the Mid-Holocene(8500-7000 to 4000-3000 a BP)when permafrost degraded intensively and extensively, and shrank to the LLPMin;(4) Neoglaciation during the late Holocene(4000-3000 to 1000 a BP, when permafrost again expanded;(5) Medieval Warming Period(MWP) in the late Holocene(1000-500 a BP) when permafrost was in a relative decline;(6) Little Ice Age(LIA) in the late Holocene(500-100 a BP), when permafrost relatively expanded, and;(7) Recent warming(during the 20 th century), when permafrost continuously degraded and still is degrading. The paleo-climate, geography and paleopermafrost extents and other features were reconstructed for each of these seven periods.展开更多
The batch splitting scheduling problem has recently become a major target in manufacturing systems, and the researchers have obtained great achievements, whereas most of existing related researches focus on equal-size...The batch splitting scheduling problem has recently become a major target in manufacturing systems, and the researchers have obtained great achievements, whereas most of existing related researches focus on equal-sized and consistent-sized batch splitting scheduling problem, and solve the problem by fixing the number of sub-batches, or the sub-batch sizes, or both. Under such circumstance and to provide a practical method for production scheduling in batch production mode, a study was made on the batch splitting scheduling problem on alternative machines, based on the objective to minimize the makespan. A scheduling approach was presented to address the variable-sized batch splitting scheduling problem in job shops trying to optimize both the number of sub-bathes and the sub-batch sizes, based on differential evolution(DE), making full use of the finding that the sum of values of genes in one chromosome remains the same before and after mutation in DE. Considering before-arrival set-up time and processing time separately, a variable-sized batch splitting scheduling model was established and a new hybrid algorithm was brought forward to solve both the batch splitting problem and the batch scheduling problem. A new parallel chromosome representation was adopted, and the batch scheduling chromosome and the batch splitting chromosome were treated separately during the global search procedure, based on self-adaptive DE and genetic crossover operator, respectively. A new local search method was further designed to gain a better performance. A solution consists of the optimum number of sub-bathes for each operation per job, the optimum batch size for each sub-batch and the optimum sequence of sub-batches. Computational experiments of four test instances and a realistic problem in a speaker workshop were performed to testify the effectiveness of the proposed scheduling method. The study takes advantage of DE's distinctive feature, and employs the algorithm as a solution approach, and thereby deepens and enriches th展开更多
Improving the catalytic activity of non-noble metal single atom catalysts(SACs)has attracted considerable attention in materials science.Although optimizing the local electronic structure of single atom can greatly im...Improving the catalytic activity of non-noble metal single atom catalysts(SACs)has attracted considerable attention in materials science.Although optimizing the local electronic structure of single atom can greatly improve their catalytic activity,it often involves in-plane modulation and requires high temperatures.Herein,we report a novel strategy to manipulate the local electronic structure of SACs via the modulation of axial Co-S bond anchored onto graphitic carbon nitride(C_(3)N_(4))at room temperature(RT).Each Co atom is bonded to four N atoms and one S atom(Co-(N,S)/C_(3)N_(4)).Owing to the greater electronegativity of S in the Co-S bond,the local electronic structure of the Co atoms is available to be controlled at a relatively moderate level.Consequently,when employed for the photocatalytic hydrogen evolution reaction,the adsorption energy of intermediate hydrogen(H*)on the Co atoms is remarkably low.In the presence of the Co-(N,S)/C_(3)N_(4)SACs,the hydrogen evolution rates reach up to 10 mmol/(g·h),which is nearly 10 and 2.5 times greater than the rates in the presence of previously reported transition metal/C_(3)N_(4)and noble platinum nanoparticles(PtNPs)/C_(3)N_(4)catalysts,respectively.Attributed to the tailorable axial Co-S bond in the SAC,the local electronic structure of the Co atoms can be further optimized for other photocatalytic reactions.This axial coordination engineering strategy is universal in catalyst designing and can be used for a variety of photocatalytic applications.展开更多
文摘In this paper, the evolution of intraseasonal oscillation over the South China Sea and tropical western Pacific area and its effect to the summer rainfall in the southern China are studied based on the ECMWF data and TBB data) analyses. A very low-frequency waves exist in the tropics and play an important role in dominating intraseasonal oscillation and lead to special seasonal variation of intraseasonal oscillation over the South China Sea/tropical western Pacific area. The intraseasonal oscillation (convection) over the South China Sea and tropical western Pacific area is closely related to the summer rainfall (convection) in the southern China. Their relationship seems to be a seesaw feature, and this relationship resulting from the different pattern of convection in those two regions is caused by the differnt type of local meridional circulation.
基金supported by the National Natural Science Foundation of China and Russian Foundation for Basic Research (FRBR) on “Formation, evolution and changes of Pleistocene cryogenic deposits in Eastern Asia” (Grant No. 41811530093)the Key Program of the Department of International Cooperation of the Chinese Academy of Sciences (Assessment of changes in permafrost in China, Russia and Mongolia and their impacts on key engineering infrastructures), (Permafrost extent in China during the Last Glaciation Maximum and Megathermal) of the Strategic Pilot Science and Technology Program of the Chinese Academy of Sciences (Grant No. XDA05120302)the CAS Overseas Professorship of Sergey S. Marchenko, and under the auspices of the International Permafrost Association Working Group on Global Permafrost Extent During the Last Permafrost Maximum (LPM)
文摘The formation and evolution of permafrost in China during the last 20 ka were reconstructed on the basis of large amount of paleo-permafrost remains and paleo-periglacial evidence, as well as paleo-glacial landforms, paleo-flora and paleofauna records. The results indicate that, during the local Last Glacial Maximum(LLGM) or local Last Permafrost Maximum(LLPMax), the extent of permafrost of China reached 5.3×106-5.4×106 km2, or thrice that of today, but permafrost shrank to only0.80×106-0.85×106 km2, or 50% that of present, during the local Holocene Megathermal Period(LHMP), or the local Last Permafrost Minimum(LLPMin). On the basis of the dating of periglacial remains and their distributive features, the extent of permafrost in China was delineated for the two periods of LLGM(LLPMax) and LHMP(LLPMin), and the evolution of permafrost in China was divided into seven periods as follows:(1) LLGM in Late Pleistocene(ca. 20000 to 13000-10800 a BP)with extensive evidence for the presence of intensive ice-wedge expansion for outlining its LLPMax extent;(2) A period of dramatically changing climate during the early Holocene(10800 to 8500-7000 a BP) when permafrost remained relatively stable but with a general trend of shrinking areal extent;(3) The LHMP in the Mid-Holocene(8500-7000 to 4000-3000 a BP)when permafrost degraded intensively and extensively, and shrank to the LLPMin;(4) Neoglaciation during the late Holocene(4000-3000 to 1000 a BP, when permafrost again expanded;(5) Medieval Warming Period(MWP) in the late Holocene(1000-500 a BP) when permafrost was in a relative decline;(6) Little Ice Age(LIA) in the late Holocene(500-100 a BP), when permafrost relatively expanded, and;(7) Recent warming(during the 20 th century), when permafrost continuously degraded and still is degrading. The paleo-climate, geography and paleopermafrost extents and other features were reconstructed for each of these seven periods.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z155)National Natural Science Foundation of China (Grant No. 60970021)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1090592)
文摘The batch splitting scheduling problem has recently become a major target in manufacturing systems, and the researchers have obtained great achievements, whereas most of existing related researches focus on equal-sized and consistent-sized batch splitting scheduling problem, and solve the problem by fixing the number of sub-batches, or the sub-batch sizes, or both. Under such circumstance and to provide a practical method for production scheduling in batch production mode, a study was made on the batch splitting scheduling problem on alternative machines, based on the objective to minimize the makespan. A scheduling approach was presented to address the variable-sized batch splitting scheduling problem in job shops trying to optimize both the number of sub-bathes and the sub-batch sizes, based on differential evolution(DE), making full use of the finding that the sum of values of genes in one chromosome remains the same before and after mutation in DE. Considering before-arrival set-up time and processing time separately, a variable-sized batch splitting scheduling model was established and a new hybrid algorithm was brought forward to solve both the batch splitting problem and the batch scheduling problem. A new parallel chromosome representation was adopted, and the batch scheduling chromosome and the batch splitting chromosome were treated separately during the global search procedure, based on self-adaptive DE and genetic crossover operator, respectively. A new local search method was further designed to gain a better performance. A solution consists of the optimum number of sub-bathes for each operation per job, the optimum batch size for each sub-batch and the optimum sequence of sub-batches. Computational experiments of four test instances and a realistic problem in a speaker workshop were performed to testify the effectiveness of the proposed scheduling method. The study takes advantage of DE's distinctive feature, and employs the algorithm as a solution approach, and thereby deepens and enriches th
基金National Natural Science Foundation of China(No.22008251)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010318)Shenzhen Science and Technology Program(No.JCYJ20220531095813031).
文摘Improving the catalytic activity of non-noble metal single atom catalysts(SACs)has attracted considerable attention in materials science.Although optimizing the local electronic structure of single atom can greatly improve their catalytic activity,it often involves in-plane modulation and requires high temperatures.Herein,we report a novel strategy to manipulate the local electronic structure of SACs via the modulation of axial Co-S bond anchored onto graphitic carbon nitride(C_(3)N_(4))at room temperature(RT).Each Co atom is bonded to four N atoms and one S atom(Co-(N,S)/C_(3)N_(4)).Owing to the greater electronegativity of S in the Co-S bond,the local electronic structure of the Co atoms is available to be controlled at a relatively moderate level.Consequently,when employed for the photocatalytic hydrogen evolution reaction,the adsorption energy of intermediate hydrogen(H*)on the Co atoms is remarkably low.In the presence of the Co-(N,S)/C_(3)N_(4)SACs,the hydrogen evolution rates reach up to 10 mmol/(g·h),which is nearly 10 and 2.5 times greater than the rates in the presence of previously reported transition metal/C_(3)N_(4)and noble platinum nanoparticles(PtNPs)/C_(3)N_(4)catalysts,respectively.Attributed to the tailorable axial Co-S bond in the SAC,the local electronic structure of the Co atoms can be further optimized for other photocatalytic reactions.This axial coordination engineering strategy is universal in catalyst designing and can be used for a variety of photocatalytic applications.