针对全变分模型(total variation,TV)以图像的梯度信息作为去噪的尺度参数,未考虑图像局部纹理的方向性的缺点,提出了一种基于图像局部方向特性的自适应全变分去噪模型(Adaptive directional total variation,ADTV),并推导出该模型的迭...针对全变分模型(total variation,TV)以图像的梯度信息作为去噪的尺度参数,未考虑图像局部纹理的方向性的缺点,提出了一种基于图像局部方向特性的自适应全变分去噪模型(Adaptive directional total variation,ADTV),并推导出该模型的迭代数值求解过程。在该模型中,首先,计算出图像局部方向的角度矩阵。然后,构造与图像纹理方向一致的椭圆区域代替TV模型的圆形区域。最后,通过优化最小化算法迭代求解以获得去噪后图像。通过对比实验证明,本文提出的模型取得了更高的峰值信噪比,去噪过程中更好地增强了图像的细节信息。展开更多
针对局部方向数(Local Directional Number pattern,LDN)类方法的人脸识别通常仅利用梯度信息且信息提取不充分的问题,提出双偏差双空间局部方向模式(Double Variation and Double Space Local Directional Pattern,DVDSLDP)。该方法首...针对局部方向数(Local Directional Number pattern,LDN)类方法的人脸识别通常仅利用梯度信息且信息提取不充分的问题,提出双偏差双空间局部方向模式(Double Variation and Double Space Local Directional Pattern,DVDSLDP)。该方法首先通过像素采样扩大关联邻域信息,再利用边缘响应算子和局部前后向差分获得的相对偏差和绝对偏差以构成双偏差信息,充分挖掘局部梯度空间信息;然后与所提取像素的灰度空间特征级联融合,以获得双空间特征,再进行模式编码得到特征图;最后依据信息熵加权级联各子块直方图获得人脸特征向量,使用最近邻分类器完成分类。针对ORL、Yale、AR人脸库和相关典型方法的对比结果表明:利用双空间特征的融合,获得了轮廓更清晰、纹理更丰富的编码特征图,在ORL和Yale库上分别达到了99.50%、94.44%的识别率,尤其是在训练样本较少时性能提升明显;该方法针对AR库的表情、光照、遮挡A和遮挡B子集分别达到了99.67%、100%、99.33%和97.33%的识别率,明显高于其他方法,表现出良好的鲁棒性。展开更多
针对目前人脸识别方法中的特征提取缺乏细节和运算量较大的问题,提出一种面向方向选择的差值局部方向模式人脸识别算法(Direction-Selected Difference Local Direction Pattern)DSDLDP,首先利用Kirsch算子计算像素的卷积值,并进行第一...针对目前人脸识别方法中的特征提取缺乏细节和运算量较大的问题,提出一种面向方向选择的差值局部方向模式人脸识别算法(Direction-Selected Difference Local Direction Pattern)DSDLDP,首先利用Kirsch算子计算像素的卷积值,并进行第一次相邻差值计算,然后选择特定方向进行二次差值计算生成DSDLDP模式编码,并利用等价模式降低编码模式种类.最后人脸图像被划分成多个通过DSDLDP编码的图像块,生成对应的直方图,串联起来表示人脸向量.实验结果表明,与当前主流的人脸识别算法相比,DSDLDP算法提取人脸特征更为细致,识别率更高,抗噪声有更好的鲁棒性.展开更多
文摘针对全变分模型(total variation,TV)以图像的梯度信息作为去噪的尺度参数,未考虑图像局部纹理的方向性的缺点,提出了一种基于图像局部方向特性的自适应全变分去噪模型(Adaptive directional total variation,ADTV),并推导出该模型的迭代数值求解过程。在该模型中,首先,计算出图像局部方向的角度矩阵。然后,构造与图像纹理方向一致的椭圆区域代替TV模型的圆形区域。最后,通过优化最小化算法迭代求解以获得去噪后图像。通过对比实验证明,本文提出的模型取得了更高的峰值信噪比,去噪过程中更好地增强了图像的细节信息。
文摘针对局部方向数(Local Directional Number pattern,LDN)类方法的人脸识别通常仅利用梯度信息且信息提取不充分的问题,提出双偏差双空间局部方向模式(Double Variation and Double Space Local Directional Pattern,DVDSLDP)。该方法首先通过像素采样扩大关联邻域信息,再利用边缘响应算子和局部前后向差分获得的相对偏差和绝对偏差以构成双偏差信息,充分挖掘局部梯度空间信息;然后与所提取像素的灰度空间特征级联融合,以获得双空间特征,再进行模式编码得到特征图;最后依据信息熵加权级联各子块直方图获得人脸特征向量,使用最近邻分类器完成分类。针对ORL、Yale、AR人脸库和相关典型方法的对比结果表明:利用双空间特征的融合,获得了轮廓更清晰、纹理更丰富的编码特征图,在ORL和Yale库上分别达到了99.50%、94.44%的识别率,尤其是在训练样本较少时性能提升明显;该方法针对AR库的表情、光照、遮挡A和遮挡B子集分别达到了99.67%、100%、99.33%和97.33%的识别率,明显高于其他方法,表现出良好的鲁棒性。
文摘针对目前人脸识别方法中的特征提取缺乏细节和运算量较大的问题,提出一种面向方向选择的差值局部方向模式人脸识别算法(Direction-Selected Difference Local Direction Pattern)DSDLDP,首先利用Kirsch算子计算像素的卷积值,并进行第一次相邻差值计算,然后选择特定方向进行二次差值计算生成DSDLDP模式编码,并利用等价模式降低编码模式种类.最后人脸图像被划分成多个通过DSDLDP编码的图像块,生成对应的直方图,串联起来表示人脸向量.实验结果表明,与当前主流的人脸识别算法相比,DSDLDP算法提取人脸特征更为细致,识别率更高,抗噪声有更好的鲁棒性.