针对机械振动信号非线性、非平稳性以及故障特征难以提取的问题,提出了基于局部特征尺度分解(local characteristic-scale decomposition,LCD)、排列熵和线性局部切空间排列(Liner local tangent space alignment,LLTSA)的机械故障特征...针对机械振动信号非线性、非平稳性以及故障特征难以提取的问题,提出了基于局部特征尺度分解(local characteristic-scale decomposition,LCD)、排列熵和线性局部切空间排列(Liner local tangent space alignment,LLTSA)的机械故障特征提取方法。该方法将LCD、排列熵和LLTSA相结合。首先,利用LCD将机械振动信号分解成不同尺度下的内禀尺度分量(intrinsic scale component,ISC)并计算各分量的排列熵,初步提取高维故障特征。其次,采用LLTSA对故障特征进行二次特征提取,得到维数低、敏感度高且聚类性好的低维特征。最后,采用支持向量机(support vector machine,SVM)对提取特征进行评估。滚动轴承的故障诊断实验表明,所提方法能够以较高的精度识别滚动轴承的各典型故障,具有一定的优势。展开更多
局部特征尺度分解(Local characteristic-scale decomposition,LCD)是一种崭新的自适应时频分析方法,在旋转机械故障诊断领域得到了初步的应用。在研究噪声对LCD影响的基础上,提出了一种奇异值分解(Singular value decomposition,SVD)...局部特征尺度分解(Local characteristic-scale decomposition,LCD)是一种崭新的自适应时频分析方法,在旋转机械故障诊断领域得到了初步的应用。在研究噪声对LCD影响的基础上,提出了一种奇异值分解(Singular value decomposition,SVD)降噪与LCD相结合的轴承故障诊断方法。首先对信号进行相空间重构,然后运用SVD降噪,对降噪信号进行LCD,将得到的内禀尺度分量进行包络谱分析提取故障特征。通过数据仿真与轴承内圈故障数据分析,验证了该方法的有效性。展开更多
文摘局部特征尺度分解(Local characteristic-scale decomposition,LCD)是一种崭新的自适应时频分析方法,在旋转机械故障诊断领域得到了初步的应用。在研究噪声对LCD影响的基础上,提出了一种奇异值分解(Singular value decomposition,SVD)降噪与LCD相结合的轴承故障诊断方法。首先对信号进行相空间重构,然后运用SVD降噪,对降噪信号进行LCD,将得到的内禀尺度分量进行包络谱分析提取故障特征。通过数据仿真与轴承内圈故障数据分析,验证了该方法的有效性。