With the increase of high-speed network backbones, the performance of server’s network interface gradually becomes a pivotal factor. This study provides a method called Ethernet Links Trunking (ELT) technology for ac...With the increase of high-speed network backbones, the performance of server’s network interface gradually becomes a pivotal factor. This study provides a method called Ethernet Links Trunking (ELT) technology for achieving efficient connec-tivity between backbones and servers, which provides higher bandwidth and availability of server network interface. The overview of the ELT technology and the results of performance experiment are presented in this paper. Findings showed that the network bandwidth can be scaled by multiple ELT technologies so that more reliable network connectivity can be guaranteed. Some crucial techniques such as Adapter Load Balancing (ALB) and Adapter Fault Tolerance (AFT) are presented in this paper. Experimental results showed that parallel channels of Fast Ethernet are both necessary and sufficient for supporting the data rates of multiple concurrent file transfers on file server.展开更多
在风洞天平校准系统中,加载头的主要功能是保证力的三要素中"作用点"位置的准确。然而,由于加工制造误差和尺寸测量误差的存在,加载头施力点的实际位置总是会偏离其相应的理论正确位置,从而导致施力点位置坐标产生误差。这些...在风洞天平校准系统中,加载头的主要功能是保证力的三要素中"作用点"位置的准确。然而,由于加工制造误差和尺寸测量误差的存在,加载头施力点的实际位置总是会偏离其相应的理论正确位置,从而导致施力点位置坐标产生误差。这些误差会经由加载头传导到天平校准公式中,从而影响天平载荷测量的准确性。因此,有必要对加载头不确定度的评定方法进行研究。首先采用GUM(guide to the expression of uncertainty in the measurement,ISO/IEC GUIDE 98-3:2008)方法建立了加载头不确定度的评定方法和步骤,接着给出了加载头不确定度的表示方法及指标要求,最后以某加载头为例,给出了不确定度评定的详细过程及结果。结果表明,该型加载头各施力点位置坐标的扩展不确定度平均值为0.044mm;力矩力臂的相对扩展不确定度平均值为0.0072%。展开更多
基金Project (No. 2001AA111011) supported by the the Hi-Tech Re-search and Development Program (863) of China
文摘With the increase of high-speed network backbones, the performance of server’s network interface gradually becomes a pivotal factor. This study provides a method called Ethernet Links Trunking (ELT) technology for achieving efficient connec-tivity between backbones and servers, which provides higher bandwidth and availability of server network interface. The overview of the ELT technology and the results of performance experiment are presented in this paper. Findings showed that the network bandwidth can be scaled by multiple ELT technologies so that more reliable network connectivity can be guaranteed. Some crucial techniques such as Adapter Load Balancing (ALB) and Adapter Fault Tolerance (AFT) are presented in this paper. Experimental results showed that parallel channels of Fast Ethernet are both necessary and sufficient for supporting the data rates of multiple concurrent file transfers on file server.
文摘在风洞天平校准系统中,加载头的主要功能是保证力的三要素中"作用点"位置的准确。然而,由于加工制造误差和尺寸测量误差的存在,加载头施力点的实际位置总是会偏离其相应的理论正确位置,从而导致施力点位置坐标产生误差。这些误差会经由加载头传导到天平校准公式中,从而影响天平载荷测量的准确性。因此,有必要对加载头不确定度的评定方法进行研究。首先采用GUM(guide to the expression of uncertainty in the measurement,ISO/IEC GUIDE 98-3:2008)方法建立了加载头不确定度的评定方法和步骤,接着给出了加载头不确定度的表示方法及指标要求,最后以某加载头为例,给出了不确定度评定的详细过程及结果。结果表明,该型加载头各施力点位置坐标的扩展不确定度平均值为0.044mm;力矩力臂的相对扩展不确定度平均值为0.0072%。