期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
q-差分内积中的小q-Jacobi-Sobolev多项式
1
作者 周恒 王仁宏 《数学的实践与认识》 CSCD 北大核心 2003年第12期125-131,共7页
本文讨论了关于以下内积的正交多项式 :〈p(x) ,r(x)〉( u0 ,u(α,β) ) =∑∞k=0p(qk) r(qk) (qk-c) ak(b) k(q) k +λ∑∞k=0(Dqp) (qk) (Dqr) (qk) (aq) k(bq) k(q) k给出了它的一些代数性质以及和小 q-Jacobi多项式的关系 ,得到了在... 本文讨论了关于以下内积的正交多项式 :〈p(x) ,r(x)〉( u0 ,u(α,β) ) =∑∞k=0p(qk) r(qk) (qk-c) ak(b) k(q) k +λ∑∞k=0(Dqp) (qk) (Dqr) (qk) (aq) k(bq) k(q) k给出了它的一些代数性质以及和小 q-Jacobi多项式的关系 ,得到了在 C\([0 ,1 ]∪ H )的紧子集上Qn(x)P(α- 1,β- 1)n (x) n和 Pn(x)P(α- 1,β- 1)n (x) n的相对渐近性质 .其中 Qn(x)是 n次的小 q -Jacobi-Sobolev正交多项式 ,P(α- 1,β- 1)n (x)和 Pn(x)分别是关于线性泛函 u(α- 1,β- 1)和 u0 的首一的 n次正交多项式 . 展开更多
关键词 q-差分算子 内积 q-jacobi-Sobolev多项式 正交多项式 平方逼近
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部