以 L i2 CO3 和 NH4 VO3 为原料 ,低温合成了 L i1+ x V3 O8.通过对中间产物的热分析 ,选定了低温合成 L i1+ x V3 O8的适宜煅烧温度为 30 0℃ .研究表明 ,L i1+ x V3 O8,原料 L i/ V摩尔比应大于1∶ 3.以 Li1+ x V3 O8作为正极材料 ,...以 L i2 CO3 和 NH4 VO3 为原料 ,低温合成了 L i1+ x V3 O8.通过对中间产物的热分析 ,选定了低温合成 L i1+ x V3 O8的适宜煅烧温度为 30 0℃ .研究表明 ,L i1+ x V3 O8,原料 L i/ V摩尔比应大于1∶ 3.以 Li1+ x V3 O8作为正极材料 ,金属锂为负极组装了模拟电池 ,高、低温合成材料具有较高的放电容量和放电电压 .XRD、SEM分析结果说明低温合成样品的结晶度低、粒径较小 .展开更多
采用化学共沉淀法预先合成球形前驱体Ni0.5Co0.2Mn0.3(OH)2,再与锂源共混后高温煅烧合成高容量正极材料Li Ni0.5Co0.3Mn0.2O2。探讨了不同烧结制度对材料结构性能的影响。X射线衍射(XRD)结果表明,产物结构为α-Na Fe O2型层状结构...采用化学共沉淀法预先合成球形前驱体Ni0.5Co0.2Mn0.3(OH)2,再与锂源共混后高温煅烧合成高容量正极材料Li Ni0.5Co0.3Mn0.2O2。探讨了不同烧结制度对材料结构性能的影响。X射线衍射(XRD)结果表明,产物结构为α-Na Fe O2型层状结构。扫描电子显微镜(SEM)显示材料具有良好的球形形貌。测试材料的电化学性能,在2.75~4.20 V和2.75~4.35 V充放电截止电压,0.5 C充放电电流下,首次放电比容量分别为162.2和172.6 m Ah/g,循环3周后容量保持率分别为96.73%和94.62%。材料还表现出良好的倍率性能。展开更多
文摘以 L i2 CO3 和 NH4 VO3 为原料 ,低温合成了 L i1+ x V3 O8.通过对中间产物的热分析 ,选定了低温合成 L i1+ x V3 O8的适宜煅烧温度为 30 0℃ .研究表明 ,L i1+ x V3 O8,原料 L i/ V摩尔比应大于1∶ 3.以 Li1+ x V3 O8作为正极材料 ,金属锂为负极组装了模拟电池 ,高、低温合成材料具有较高的放电容量和放电电压 .XRD、SEM分析结果说明低温合成样品的结晶度低、粒径较小 .
文摘采用化学共沉淀法预先合成球形前驱体Ni0.5Co0.2Mn0.3(OH)2,再与锂源共混后高温煅烧合成高容量正极材料Li Ni0.5Co0.3Mn0.2O2。探讨了不同烧结制度对材料结构性能的影响。X射线衍射(XRD)结果表明,产物结构为α-Na Fe O2型层状结构。扫描电子显微镜(SEM)显示材料具有良好的球形形貌。测试材料的电化学性能,在2.75~4.20 V和2.75~4.35 V充放电截止电压,0.5 C充放电电流下,首次放电比容量分别为162.2和172.6 m Ah/g,循环3周后容量保持率分别为96.73%和94.62%。材料还表现出良好的倍率性能。