Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only d...Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only derived from the innovation in electrochemistry based on emerging energy materials and chemical engineering science,but also the technological advances in the powder technologies for electrode processing and cell fabrication.Revealing the effects of powder technology on electrode microstructure evolution during electrode processing is with critical value to realize the superior electrochemical performance.This review presents the progress in understanding the basic principles of the materials processing technologies for electrodes in lithium ion batteries.The impacts of slurry mixing and coating,electrode drying,and calendering on the electrode characteristics and electrochemical performance are comprehensively analyzed.Conclusion and outlook are drawn to shed fresh lights on the further development of efficient lithium ion batteries by advancing powder technologies and related advanced energy materials.展开更多
Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far ...Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far been the dominant choice,numerous emerging applications call for higher capacity,better safety and lower costs while maintaining sufficient cyclability.The design space for potentially better alternatives is extremely large,with numerous new chemistries and architectures being simultaneously explored.These include other insertion ions(e.g.sodium and numerous multivalent ions),conversion electrode materials(e.g.silicon,metallic anodes,halides and chalcogens)and aqueous and solid electrolytes.However,each of these potential“beyond lithium-ion”alternatives faces numerous challenges that often lead to very poor cyclability,especially at the commercial cell level,while lithium-ion batteries continue to improve in performance and decrease in cost.This review examines fundamental principles to rationalise these numerous developments,and in each case,a brief overview is given on the advantages,advances,remaining challenges preventing cell-level implementation and the state-of-the-art of the solutions to these challenges.Finally,research and development results obtained in academia are compared to emerging commercial examples,as a commentary on the current and near-future viability of these“beyond lithium-ion”alternatives.展开更多
Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of th...Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of the Li metal anode in rechargeable batteries. In this contribution, a mesoporous graphene with a high specific surface area was synthesized to host the Li metal anode. The mesoporous graphene host(MGH) has a high specific surface area(2090 m^2/g), which affords free space and an interconnected conductive pathway for Li plating and stripping, thus alleviating the volume variation and reducing the generation of dead Li during repeated cycles. More importantly, the high specific surface area of MGH efficiently reduces the local current density of the electrode, which favors a uniform Li nucleation and plating behavior, rendering a dendritefree deposition morphology at a low overpotential. These factors synergistically boost the Li utilization(90.1% vs. 70.1% for Cu foil) and life span(150 cycles vs. 100 cycles for Cu foil) with a low polarization of MGH electrode at an ultrahigh current of 15.0 mA/cm^2. The as-prepared MGH can provide fresh insights into the electrode design of the Li metal anode operating at high rates.展开更多
As the global energy policy gradually shifts from fossil energy to renewable energy,lithium batteries,as important energy storage devices,have a great advantage over other batteries and have attracted widespread atten...As the global energy policy gradually shifts from fossil energy to renewable energy,lithium batteries,as important energy storage devices,have a great advantage over other batteries and have attracted widespread attention.With the increasing energy density of lithium batteries,promotion of their safety is urgent.Thermal runaway is an inevitable safety problem in lithium battery research.Therefore,paying attention to the thermal hazards of lithium battery materials and taking corresponding preventive measures are of great significance.In this review,the heat source and thermal hazards of lithium batteries are discussed with an emphasis on the designs,modifications,and improvements to suppress thermal runaway based on the inherent structure of lithium batteries.According to the source of battery heat,we divide it into reversible heat and irreversible heat.Additionally,superfluous heat generation has profound effects,including thermal runaway,capacity loss,and electrical imbalance.Thereafter,we emphatically discuss the design and modification strategies for various battery components(anodes,cathodes,electrolytes,and separators)to suppress thermal runaway.Preparation of solid electrolyte interphase layers with excellent thermal stability and mechanical properties is the core of the modification strategy for anode materials.Additives,stable coatings,elemental substitution,and thermally responsive coating materials are commonly used to improve the safety of cathodes.Novel electrolyte additives,solid-state electrolytes,and thermally stable separators provide a good opportunity to solve the thermal runaway problem of next-generation high-performance electrochemical storage devices.展开更多
In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,...In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes.展开更多
All-solid-state lithium-sulfur batteries(ASSLSBs)employing sulfide solid electrolytes are one of the most promising next-generation energy storage systems due to their potential for higher energy density and safety.Ho...All-solid-state lithium-sulfur batteries(ASSLSBs)employing sulfide solid electrolytes are one of the most promising next-generation energy storage systems due to their potential for higher energy density and safety.However,scalable fabrication of sheet-type sulfur cathodes with high sulfur loading and excellent performances remains challenging.In this work,sheet-type freestanding sulfur cathodes with high sulfur loading were fabricated by dry electrode technology.The unique fibrous morphologies of polytetrafluoroethylene(PTFE)binders in dry electrodes not only provides excellent mechanical properties but also uncompromised ionic/electronic conductance.Even employed with thickened dry cathodes with high sulfur loading of 2 mg cm^(-2),ASSLSBs still exhibit outstanding rate performance and cycle stability.Moreover,the all-solid-state lithium-sulfur monolayer pouch cells(9.2 m Ah)were also demonstrated and exhibited excellent safety under a harsh test situation.This work verifies the potential of dry electrode technology in the scalable fabrication of thickened sulfur cathodes and will promote the practical applications of ASSLSBs.展开更多
The severe shuttle effect and sluggish redox kinetics of polysulfides hinder the application of lithium–sulfur batteries.Herein,delaminated Mo_(2)CT_(x) MXene nanosheets are derived by chemical etching approach and f...The severe shuttle effect and sluggish redox kinetics of polysulfides hinder the application of lithium–sulfur batteries.Herein,delaminated Mo_(2)CT_(x) MXene nanosheets are derived by chemical etching approach and further applied as a sulfur host for sulfur spheres(S@Mo_(2)CT_(x)).In the MXene encapsulated architecture,the external MXene nanosheets not only immobilize the soluble polysulfides by strong chemical adsorption but also efficiently catalyze the liquid–liquid conversion and liquid–solid nucleation process of lithium polysulfides.In addition,the S@Mo_(2)CT_(x) electrode delivered fast charge and lithium-ion transport due to the superior electric conductivity and low lithiumion diffusion energy barrier of MXene nanosheets.As a result,the S@Mo_(2)CT_(x) electrode exhibits a high reversible capacity of 918 mAh·g^(-1) at 1.0C with good cycling stability and a high areal capacity of 7.0 mAh·cm^(-2) with sulfur loading of 7.4 mg·cm^(-2) under a lean electrolyte condition.展开更多
Despite being widely used in people's daily life,the safety issue of lithium-ion batteries(LIBs)has become the major barrier for them to be applied in electrical vehicles(EVs)or large-scale energy storage.Typicall...Despite being widely used in people's daily life,the safety issue of lithium-ion batteries(LIBs)has become the major barrier for them to be applied in electrical vehicles(EVs)or large-scale energy storage.Typically,due to the use of liquid electrolytes containing flammable solvents which are easily oxidized by excessive and accumulated heat,the potential thermal runaway is a major safety concern for traditional LIBs.A strategy for a safer electrolyte design is controlling the flammability and volatility of the liquid electro-lytes,to effectively prevent thermal runaway,thus avoiding fire or other risks.Through this study,the mechanisms of thermal runa-way and the recent progress in electrolyte engineering toward LIBs were summarized,covering the major strategies including adding flame-retardants,the utilization of ionic liquid electrolytes and solid electrolytes.The characteristics,strengths and weaknesses of different strategies were discussed.New designing directions of safer electrolytes for the LIBs were also provided.展开更多
Lithium plating in working batteries has attracted wide attention in the exploration of safe energy storage. Establishing an effective and rapid early-warning method is strongly considered but quite challenging since ...Lithium plating in working batteries has attracted wide attention in the exploration of safe energy storage. Establishing an effective and rapid early-warning method is strongly considered but quite challenging since lithium plating behavior is determined by diverse factors. In this contribution, we present a non-destructive electrochemical detection method based on transient state analysis and threeelectrode cell configuration. Through dividing the iR drop value by the current density, the as-obtained impedance quantity(R_(i)) can serve as a descriptor to describe the change of electrochemical reaction impedance on the graphite anode. The onset of lithium plating can be identified from the sharp drop of R_(i). Once the dendritic plated lithium occurs, the extra electrochemical reactions at the lithium interfaces leads to growing active area and reduced surface resistance of the anode. We proposed a protocol to operate the batteries under the limited capacity, which renders the cell with 98.2% capacity retention after 1000 cycles without lithium plating. The early-warning method has also been validated in in-situ optical microscopy batteries and practical pouch cells, providing a general but effective method for online lithium plating detection towards safe batteries.展开更多
Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,...Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,we conducted a comprehensive postmortem analysis utilizing ^(7)Li NMR,employing a stan-dard magic angle spinning probe to examine protective-layer coated Li metal electrodes and LiAg alloy electrodes against bare Li metal electrodes within Li metal batteries(LMBs).Our investigation explores the effects of sample burrs,alignment with the magnetic field,the existence of liquid electrolytes,and precycling on the ^(7)Li NMR signals.Through contrasting NMR spectra before and after cycling,we identi-fied alterations in Li^(0) and Li^(+) signals attributable to the degradation of the Li metal electrode.Our NMR analyses decisively demonstrate the efficacy of the protective layer in mitigating dendrite and solid elec-trolyte interphase formation.Moreover,we noted that Li*ions near the Li metal surface exhibit magnetic susceptibility anisotropy,revealing a novel approach to studying diamagnetic species on Li metal elec-trodes in LMBs.This study provides valuable insights and practical guidelines for characterizing distinct lithium states within LMBs.展开更多
Lithium is known as the“white petroleum”of the electrification era,and the global demand for lithium grows rapidly with the quick development of new energy industry.The aqueous solutions,such as salt lake brine,unde...Lithium is known as the“white petroleum”of the electrification era,and the global demand for lithium grows rapidly with the quick development of new energy industry.The aqueous solutions,such as salt lake brine,underground brine,and seawater,have large lithium reserves,thus this kind of lithium resource has become a research hotspot recently.Compared with other lithium extraction technologies,electro-sorption method shows good prospects for practical applications with advantages in the aspects of efficiency,recovery ratio,cost,and environment.Herein,this review covers recent progress on electro-sorption technology for lithium recovery from aqueous solutions,including the concept illustration,research progress of the applied working electrodes and counter electrodes,and the evaluation indicators of electro-sorption system.Meanwhile,some prospects for the development of this technology are also proposed.We hope this review is beneficial for the construction of high-efficient electrochemical lithium recovery system to achieve an adequate lithium supply in the future.展开更多
Restraining the aggregation and polysulfide dissolution of edge-enriched metal sulfides is of significance for their applications as anode materials of lithium-ion batteries(LIBs)with high capacity and long cycle-life...Restraining the aggregation and polysulfide dissolution of edge-enriched metal sulfides is of significance for their applications as anode materials of lithium-ion batteries(LIBs)with high capacity and long cycle-life.In this work,we have reported the incorporation of MoS2 nanocrystals into amorphous carbon on the surface of reduced graphene oxide(rGO)by balancing the decomposition rates of phenolic resin(PF)-impregnated ammonium thiomolybdate(ATM),which subsequently forms the MoS2@C/rGO film through redispersion and vacuum filtration.Such structural design effectively avoids the aggregation of MoS2 nanocrystals and Li2S loss,and meanwhile ion enrichment in amorphous carbon and diffusion reinforcement can greatly accelerate the electrochemical reaction kinetics.When applied as the selfstanding anode,the MoS2@C/rGO film possesses high reversible capacities of 1164 mA h g^-1 at the current density of 0.2 A g^-1 and 810 mA h g^-1 at 6.4 A g^-1.It also exhibits quite a high capacity retention after 1000 cycles at 3.2 A g^-1.This work develops the formation theory of incorporation structures and promotes their applications in energy storage devices.展开更多
基金This work was supported by National Natural Science Foundation of China(Grant Nos.21805161,21808121,and 21825501)National Key Research and Development Program(Grant No.2016YFA0202500)+1 种基金China Post-Doctoral Science Foundation(Grant Nos.2020M670155 and 2020T130054)the Tsinghua University Initiative Scientific Research Program.
文摘Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only derived from the innovation in electrochemistry based on emerging energy materials and chemical engineering science,but also the technological advances in the powder technologies for electrode processing and cell fabrication.Revealing the effects of powder technology on electrode microstructure evolution during electrode processing is with critical value to realize the superior electrochemical performance.This review presents the progress in understanding the basic principles of the materials processing technologies for electrodes in lithium ion batteries.The impacts of slurry mixing and coating,electrode drying,and calendering on the electrode characteristics and electrochemical performance are comprehensively analyzed.Conclusion and outlook are drawn to shed fresh lights on the further development of efficient lithium ion batteries by advancing powder technologies and related advanced energy materials.
基金J.Wang acknowledges the support by MOE,Singapore Ministry of Education(MOE2018-T2-2-095)for research work conducted at the National University of Singapore.Z.L.Liu acknowledges the A*STAR’s Central Research Funds(CRF)Award(Project:SC25/21-111312)+1 种基金Y.Gao acknowledges financial support by ST Engineering Advanced Material Engineering Pte.Ltd.and Singapore Economic Development BoardOpen access funding provided by Shanghai Jiao Tong University
文摘Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far been the dominant choice,numerous emerging applications call for higher capacity,better safety and lower costs while maintaining sufficient cyclability.The design space for potentially better alternatives is extremely large,with numerous new chemistries and architectures being simultaneously explored.These include other insertion ions(e.g.sodium and numerous multivalent ions),conversion electrode materials(e.g.silicon,metallic anodes,halides and chalcogens)and aqueous and solid electrolytes.However,each of these potential“beyond lithium-ion”alternatives faces numerous challenges that often lead to very poor cyclability,especially at the commercial cell level,while lithium-ion batteries continue to improve in performance and decrease in cost.This review examines fundamental principles to rationalise these numerous developments,and in each case,a brief overview is given on the advantages,advances,remaining challenges preventing cell-level implementation and the state-of-the-art of the solutions to these challenges.Finally,research and development results obtained in academia are compared to emerging commercial examples,as a commentary on the current and near-future viability of these“beyond lithium-ion”alternatives.
基金supported by the National Key Research and Development Program (Nos. 2016YFA0202500 and 2016YFA0200102)National Natural Science Foundation of China (Nos. 21676160, 21825501, 21805161, 21808121, and U1801257)the Tsinghua University Initiative Scientific Research Program.
文摘Lithium(Li) metal anode has received extensive attentions due to its ultrahigh theoretical capacity and the most negative electrode potential. However, dendrite growth severely impedes the practical applications of the Li metal anode in rechargeable batteries. In this contribution, a mesoporous graphene with a high specific surface area was synthesized to host the Li metal anode. The mesoporous graphene host(MGH) has a high specific surface area(2090 m^2/g), which affords free space and an interconnected conductive pathway for Li plating and stripping, thus alleviating the volume variation and reducing the generation of dead Li during repeated cycles. More importantly, the high specific surface area of MGH efficiently reduces the local current density of the electrode, which favors a uniform Li nucleation and plating behavior, rendering a dendritefree deposition morphology at a low overpotential. These factors synergistically boost the Li utilization(90.1% vs. 70.1% for Cu foil) and life span(150 cycles vs. 100 cycles for Cu foil) with a low polarization of MGH electrode at an ultrahigh current of 15.0 mA/cm^2. The as-prepared MGH can provide fresh insights into the electrode design of the Li metal anode operating at high rates.
基金the State Key Program of the National Natural Science Foundation of China(No.51633007)the National Natural Science Foundation of China(Nos.51773147 and 51973151).
文摘As the global energy policy gradually shifts from fossil energy to renewable energy,lithium batteries,as important energy storage devices,have a great advantage over other batteries and have attracted widespread attention.With the increasing energy density of lithium batteries,promotion of their safety is urgent.Thermal runaway is an inevitable safety problem in lithium battery research.Therefore,paying attention to the thermal hazards of lithium battery materials and taking corresponding preventive measures are of great significance.In this review,the heat source and thermal hazards of lithium batteries are discussed with an emphasis on the designs,modifications,and improvements to suppress thermal runaway based on the inherent structure of lithium batteries.According to the source of battery heat,we divide it into reversible heat and irreversible heat.Additionally,superfluous heat generation has profound effects,including thermal runaway,capacity loss,and electrical imbalance.Thereafter,we emphatically discuss the design and modification strategies for various battery components(anodes,cathodes,electrolytes,and separators)to suppress thermal runaway.Preparation of solid electrolyte interphase layers with excellent thermal stability and mechanical properties is the core of the modification strategy for anode materials.Additives,stable coatings,elemental substitution,and thermally responsive coating materials are commonly used to improve the safety of cathodes.Novel electrolyte additives,solid-state electrolytes,and thermally stable separators provide a good opportunity to solve the thermal runaway problem of next-generation high-performance electrochemical storage devices.
基金supported by the Russian Science Foundation as part of joint project of RSF-NSFC no.21-43-00006“Polysulfide IonSolvent Complexes and Their Electrochemical Behavior in Lithium-Sulfur Batteries”with the National Natural Science Foundation of China(22061132002)。
文摘In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes.
基金supported by the National Key Research and Development Program of China(2021YFB2500300)the National Natural Science Foundation of China(22075029,22108151,22109084)the China Postdoctoral Science Foundation(2021TQ0164)。
文摘All-solid-state lithium-sulfur batteries(ASSLSBs)employing sulfide solid electrolytes are one of the most promising next-generation energy storage systems due to their potential for higher energy density and safety.However,scalable fabrication of sheet-type sulfur cathodes with high sulfur loading and excellent performances remains challenging.In this work,sheet-type freestanding sulfur cathodes with high sulfur loading were fabricated by dry electrode technology.The unique fibrous morphologies of polytetrafluoroethylene(PTFE)binders in dry electrodes not only provides excellent mechanical properties but also uncompromised ionic/electronic conductance.Even employed with thickened dry cathodes with high sulfur loading of 2 mg cm^(-2),ASSLSBs still exhibit outstanding rate performance and cycle stability.Moreover,the all-solid-state lithium-sulfur monolayer pouch cells(9.2 m Ah)were also demonstrated and exhibited excellent safety under a harsh test situation.This work verifies the potential of dry electrode technology in the scalable fabrication of thickened sulfur cathodes and will promote the practical applications of ASSLSBs.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.51572007 and 51622203).
文摘The severe shuttle effect and sluggish redox kinetics of polysulfides hinder the application of lithium–sulfur batteries.Herein,delaminated Mo_(2)CT_(x) MXene nanosheets are derived by chemical etching approach and further applied as a sulfur host for sulfur spheres(S@Mo_(2)CT_(x)).In the MXene encapsulated architecture,the external MXene nanosheets not only immobilize the soluble polysulfides by strong chemical adsorption but also efficiently catalyze the liquid–liquid conversion and liquid–solid nucleation process of lithium polysulfides.In addition,the S@Mo_(2)CT_(x) electrode delivered fast charge and lithium-ion transport due to the superior electric conductivity and low lithiumion diffusion energy barrier of MXene nanosheets.As a result,the S@Mo_(2)CT_(x) electrode exhibits a high reversible capacity of 918 mAh·g^(-1) at 1.0C with good cycling stability and a high areal capacity of 7.0 mAh·cm^(-2) with sulfur loading of 7.4 mg·cm^(-2) under a lean electrolyte condition.
基金supported by the Australian Research Council discovery project,grant Nos.DP200103332,DP200103315.
文摘Despite being widely used in people's daily life,the safety issue of lithium-ion batteries(LIBs)has become the major barrier for them to be applied in electrical vehicles(EVs)or large-scale energy storage.Typically,due to the use of liquid electrolytes containing flammable solvents which are easily oxidized by excessive and accumulated heat,the potential thermal runaway is a major safety concern for traditional LIBs.A strategy for a safer electrolyte design is controlling the flammability and volatility of the liquid electro-lytes,to effectively prevent thermal runaway,thus avoiding fire or other risks.Through this study,the mechanisms of thermal runa-way and the recent progress in electrolyte engineering toward LIBs were summarized,covering the major strategies including adding flame-retardants,the utilization of ionic liquid electrolytes and solid electrolytes.The characteristics,strengths and weaknesses of different strategies were discussed.New designing directions of safer electrolytes for the LIBs were also provided.
基金supported by the National Natural Science Foundation of China(21808124,22075029)by Beijing Natural Science Foundation(JQ20004)+2 种基金by Scientific and Technological Key Project of Shanxi Province(20191102003)the Seed Fund of Shanxi Research Institute for Clean Energy(SXKYJF015)the Shuimu Tsinghua Scholar Program,and Tsinghua University Initiative Scientific Research Program。
文摘Lithium plating in working batteries has attracted wide attention in the exploration of safe energy storage. Establishing an effective and rapid early-warning method is strongly considered but quite challenging since lithium plating behavior is determined by diverse factors. In this contribution, we present a non-destructive electrochemical detection method based on transient state analysis and threeelectrode cell configuration. Through dividing the iR drop value by the current density, the as-obtained impedance quantity(R_(i)) can serve as a descriptor to describe the change of electrochemical reaction impedance on the graphite anode. The onset of lithium plating can be identified from the sharp drop of R_(i). Once the dendritic plated lithium occurs, the extra electrochemical reactions at the lithium interfaces leads to growing active area and reduced surface resistance of the anode. We proposed a protocol to operate the batteries under the limited capacity, which renders the cell with 98.2% capacity retention after 1000 cycles without lithium plating. The early-warning method has also been validated in in-situ optical microscopy batteries and practical pouch cells, providing a general but effective method for online lithium plating detection towards safe batteries.
基金the Basic Research Project(C123000,C210200,C310200,&C421000)of the Korea Basic Science Institute(KBSI)funded by the Korea Ministry of Science and ICT(MSIT)the Technology Development Program to Solve Climate Changes through the National Research Foundation of Korea(NRF)funded by MSIT(NRF-2021M1A2A2038141).O.H.Han thanks to Prof.I.S.Yang at Ewha Womans University for insightful discussion.
文摘Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,we conducted a comprehensive postmortem analysis utilizing ^(7)Li NMR,employing a stan-dard magic angle spinning probe to examine protective-layer coated Li metal electrodes and LiAg alloy electrodes against bare Li metal electrodes within Li metal batteries(LMBs).Our investigation explores the effects of sample burrs,alignment with the magnetic field,the existence of liquid electrolytes,and precycling on the ^(7)Li NMR signals.Through contrasting NMR spectra before and after cycling,we identi-fied alterations in Li^(0) and Li^(+) signals attributable to the degradation of the Li metal electrode.Our NMR analyses decisively demonstrate the efficacy of the protective layer in mitigating dendrite and solid elec-trolyte interphase formation.Moreover,we noted that Li*ions near the Li metal surface exhibit magnetic susceptibility anisotropy,revealing a novel approach to studying diamagnetic species on Li metal elec-trodes in LMBs.This study provides valuable insights and practical guidelines for characterizing distinct lithium states within LMBs.
基金supported by Huaneng Clean Energy Research Institute Found Project(No.CERI/TU-23-CERI03).
文摘Lithium is known as the“white petroleum”of the electrification era,and the global demand for lithium grows rapidly with the quick development of new energy industry.The aqueous solutions,such as salt lake brine,underground brine,and seawater,have large lithium reserves,thus this kind of lithium resource has become a research hotspot recently.Compared with other lithium extraction technologies,electro-sorption method shows good prospects for practical applications with advantages in the aspects of efficiency,recovery ratio,cost,and environment.Herein,this review covers recent progress on electro-sorption technology for lithium recovery from aqueous solutions,including the concept illustration,research progress of the applied working electrodes and counter electrodes,and the evaluation indicators of electro-sorption system.Meanwhile,some prospects for the development of this technology are also proposed.We hope this review is beneficial for the construction of high-efficient electrochemical lithium recovery system to achieve an adequate lithium supply in the future.
基金supported by the National Natural Science Foundation of China(21975074 and 21838003)the Basic Research Program of Shanghai(17JC1402300)+1 种基金Shanghai Scientific and Technological Innovation Project(18JC1410500)the Fundamental Research Funds for the Central Universities(222201718002)。
文摘Restraining the aggregation and polysulfide dissolution of edge-enriched metal sulfides is of significance for their applications as anode materials of lithium-ion batteries(LIBs)with high capacity and long cycle-life.In this work,we have reported the incorporation of MoS2 nanocrystals into amorphous carbon on the surface of reduced graphene oxide(rGO)by balancing the decomposition rates of phenolic resin(PF)-impregnated ammonium thiomolybdate(ATM),which subsequently forms the MoS2@C/rGO film through redispersion and vacuum filtration.Such structural design effectively avoids the aggregation of MoS2 nanocrystals and Li2S loss,and meanwhile ion enrichment in amorphous carbon and diffusion reinforcement can greatly accelerate the electrochemical reaction kinetics.When applied as the selfstanding anode,the MoS2@C/rGO film possesses high reversible capacities of 1164 mA h g^-1 at the current density of 0.2 A g^-1 and 810 mA h g^-1 at 6.4 A g^-1.It also exhibits quite a high capacity retention after 1000 cycles at 3.2 A g^-1.This work develops the formation theory of incorporation structures and promotes their applications in energy storage devices.