运用核磁共振(NMR)方法分别测定了表面活性剂辛基苯聚氧乙烯醚(TX-100)和十六烷基三甲溴化铵(CTAB)在不同温度下的临界胶束浓度.阐述了应用1D NMR线型分析方法对表面活性剂快交换体系平均停留时间的定量测量.实验测量了TX-100和CTAB胶...运用核磁共振(NMR)方法分别测定了表面活性剂辛基苯聚氧乙烯醚(TX-100)和十六烷基三甲溴化铵(CTAB)在不同温度下的临界胶束浓度.阐述了应用1D NMR线型分析方法对表面活性剂快交换体系平均停留时间的定量测量.实验测量了TX-100和CTAB胶束溶液中表面活性剂分子在不同温度下的平均停留时间.结果显示,平均停留时间随温度的增加逐渐减小,说明TX-100和CTAB分子进出胶束的速率随温度的增加逐渐加快.利用阿伦尼乌斯公式拟合,获得了TX-100和CTAB的表观交换活化能,TX-100的表观交换活化能为17.6 k J/mol,CTAB的表观交换活化能为75.3 k J/mol.对TX-100和CTAB平均停留时间和表观交换活化能进行分析,得出平均停留时间和表观交换活化能与分子结构的关系:表观交换活化能反映的是疏水相互作用和静电斥力的大小;而平均停留时间不仅受活化能的影响,还与分子结构有关.展开更多
In the Ruhrstahl-Heraeus (RH) refining process, liquid steel flow pattern in a ladle is controlled by the fluid flow behavior in the vacuum chamber. Potassium chloride solution and NaOH solution saturated with CO2 w...In the Ruhrstahl-Heraeus (RH) refining process, liquid steel flow pattern in a ladle is controlled by the fluid flow behavior in the vacuum chamber. Potassium chloride solution and NaOH solution saturated with CO2 were respectively used as a tracer to investigate the liquid and gas flow behaviors in the vacuum chamber. Principal compo nent and comparative analysis were made to show the factors controlling mixing and circulation flow rate. The liquid level and bubble behavior in the vacuum chamber greatly affect fluid flow in RH process. Experiments were performed to investigate the effects of liquid steel level, gas flow rate, bubble residence time, and gas injection mode on mixing, decarburization, and void fraction. The results indicate that the mixing process can be divided into three regions: the flow rate affected zone, the concentration gradient-affected zone, and their combination. The liquid steel level in the vacuum chamber of 300 mm is a critical point in the decarburization transition. For liquid level lower than 300 mm, liquid steel circulation controls decarburization, while for liquid level higher than 300mm, bubble behavior is the main controlling factor. During the RH process, it is recommended to use the concentrated bubble injection mode for low gas flow rates and the uniform bubble injection mode for high gas flow rates.展开更多
文摘运用核磁共振(NMR)方法分别测定了表面活性剂辛基苯聚氧乙烯醚(TX-100)和十六烷基三甲溴化铵(CTAB)在不同温度下的临界胶束浓度.阐述了应用1D NMR线型分析方法对表面活性剂快交换体系平均停留时间的定量测量.实验测量了TX-100和CTAB胶束溶液中表面活性剂分子在不同温度下的平均停留时间.结果显示,平均停留时间随温度的增加逐渐减小,说明TX-100和CTAB分子进出胶束的速率随温度的增加逐渐加快.利用阿伦尼乌斯公式拟合,获得了TX-100和CTAB的表观交换活化能,TX-100的表观交换活化能为17.6 k J/mol,CTAB的表观交换活化能为75.3 k J/mol.对TX-100和CTAB平均停留时间和表观交换活化能进行分析,得出平均停留时间和表观交换活化能与分子结构的关系:表观交换活化能反映的是疏水相互作用和静电斥力的大小;而平均停留时间不仅受活化能的影响,还与分子结构有关.
基金Item Sponsored by National Natural Science Foundation of China(51404022)Doctoral Fund of Ministry of Education of China(20130006110023)Ph.D Early Development Program of Taiyuan University of Science and Technology of China(20152008,20142001)
文摘In the Ruhrstahl-Heraeus (RH) refining process, liquid steel flow pattern in a ladle is controlled by the fluid flow behavior in the vacuum chamber. Potassium chloride solution and NaOH solution saturated with CO2 were respectively used as a tracer to investigate the liquid and gas flow behaviors in the vacuum chamber. Principal compo nent and comparative analysis were made to show the factors controlling mixing and circulation flow rate. The liquid level and bubble behavior in the vacuum chamber greatly affect fluid flow in RH process. Experiments were performed to investigate the effects of liquid steel level, gas flow rate, bubble residence time, and gas injection mode on mixing, decarburization, and void fraction. The results indicate that the mixing process can be divided into three regions: the flow rate affected zone, the concentration gradient-affected zone, and their combination. The liquid steel level in the vacuum chamber of 300 mm is a critical point in the decarburization transition. For liquid level lower than 300 mm, liquid steel circulation controls decarburization, while for liquid level higher than 300mm, bubble behavior is the main controlling factor. During the RH process, it is recommended to use the concentrated bubble injection mode for low gas flow rates and the uniform bubble injection mode for high gas flow rates.