CuO nanoparticle was synthesized via wet chemical method and was characterized diffraction (XRD), nitrogen adsorption-desorption, and scanning electron microscopy (SEM) by X-ray Catalytic oxidation of cumene with ...CuO nanoparticle was synthesized via wet chemical method and was characterized diffraction (XRD), nitrogen adsorption-desorption, and scanning electron microscopy (SEM) by X-ray Catalytic oxidation of cumene with molecular oxygen was studied over CuO nanoparticle. The catalysts showed markedly higher activities as compared to CuO prepared by conventional method, CuO/Al2O3, or homogeneous copper catalyst under comparable reaction conditions. The cumene conversion, cumene hydroperoxide (CHP) yield, and selectivity using 0.25 g CuO nanoparticle catalyst and 0.1 mol cumene at 358 K for 7 h were 44.2%, 41.2% and 93.2%, respectively. The catalyst can be recycled. After 6 recycled experiments, no loss of catalytic activity was observed.展开更多
Synergistic effect of FeVO_4 withα-Fe_2O_3 was found in Fe-V-O catalyst,which was responsible for the high apparent formation rate(A.F.R.) of benzaldehyde in liquid phase oxidation of toluene by hydrogen peroxide.T...Synergistic effect of FeVO_4 withα-Fe_2O_3 was found in Fe-V-O catalyst,which was responsible for the high apparent formation rate(A.F.R.) of benzaldehyde in liquid phase oxidation of toluene by hydrogen peroxide.The synergistic effect might create VO_πspecies as active sites;moreover,it improved the reducibility and the reactivity of Fe-V-O catalyst.In order to gain the high A.F.R. of benzaldehyde,the catalyst should have the moderate reducibihty.展开更多
基金This work is supported by the Natural Science Foundation of South China University of China(143E5041280)
文摘CuO nanoparticle was synthesized via wet chemical method and was characterized diffraction (XRD), nitrogen adsorption-desorption, and scanning electron microscopy (SEM) by X-ray Catalytic oxidation of cumene with molecular oxygen was studied over CuO nanoparticle. The catalysts showed markedly higher activities as compared to CuO prepared by conventional method, CuO/Al2O3, or homogeneous copper catalyst under comparable reaction conditions. The cumene conversion, cumene hydroperoxide (CHP) yield, and selectivity using 0.25 g CuO nanoparticle catalyst and 0.1 mol cumene at 358 K for 7 h were 44.2%, 41.2% and 93.2%, respectively. The catalyst can be recycled. After 6 recycled experiments, no loss of catalytic activity was observed.
基金supported by Ministry of Education(NoNCET-10-878,20096101120018,2009-37th of SRFROCS)Shaanxi Province(No2009ZDKG-70,09JK793)+1 种基金Northwest University(NoPR09005,10YSY08)State Key Lab for SSPC(2009)
文摘Synergistic effect of FeVO_4 withα-Fe_2O_3 was found in Fe-V-O catalyst,which was responsible for the high apparent formation rate(A.F.R.) of benzaldehyde in liquid phase oxidation of toluene by hydrogen peroxide.The synergistic effect might create VO_πspecies as active sites;moreover,it improved the reducibility and the reactivity of Fe-V-O catalyst.In order to gain the high A.F.R. of benzaldehyde,the catalyst should have the moderate reducibihty.