This paper considers the problem of robust non-fragile control for a class of two-dimensional (2-D) discrete uncertain systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model under contro...This paper considers the problem of robust non-fragile control for a class of two-dimensional (2-D) discrete uncertain systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model under controller gain variations. The parameter uncertainty is assumed to be norm-bounded. The problem to be addressed is the design of non-fragile robust controllers via state feedback such that the resulting closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A sufficient condition for the existence of such controllers is derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. Finally, a numerical example is illustrated to show the contribution of the main result.展开更多
This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space ...This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model with norm bounded uncertainties. A convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the suboptimal guaranteed cost controller which ensures the quadratic stability of the closed-loop system and minimizes the associated closed-loop cost function. Application of the proposed controller design method is illustrated with the help of one example.展开更多
文摘This paper considers the problem of robust non-fragile control for a class of two-dimensional (2-D) discrete uncertain systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model under controller gain variations. The parameter uncertainty is assumed to be norm-bounded. The problem to be addressed is the design of non-fragile robust controllers via state feedback such that the resulting closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A sufficient condition for the existence of such controllers is derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. Finally, a numerical example is illustrated to show the contribution of the main result.
文摘This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model with norm bounded uncertainties. A convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the suboptimal guaranteed cost controller which ensures the quadratic stability of the closed-loop system and minimizes the associated closed-loop cost function. Application of the proposed controller design method is illustrated with the help of one example.