A class of polynomial primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, with parameters p and q, is presented. Its growth term is between linear and qu...A class of polynomial primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, with parameters p and q, is presented. Its growth term is between linear and quadratic. Some new tools for the analysis of the algorithms are proposed. The complexity bounds of O(√Nlog N log N/ε) for large-update methods and O(√Nlog N/ε) for smallupdate methods match the best known complexity bounds obtained for these methods. Numerical tests demonstrate the behavior of the algorithms for different results of the parameters p and q.展开更多
Kernel functions play an important role in defining new search directions for primal-dual interior-point algorithm for solving linear optimization problems. In this paper we present a new kernel function which yields ...Kernel functions play an important role in defining new search directions for primal-dual interior-point algorithm for solving linear optimization problems. In this paper we present a new kernel function which yields an algorithm with the best known complexity bound for both large- and small-update methods.展开更多
文摘A class of polynomial primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, with parameters p and q, is presented. Its growth term is between linear and quadratic. Some new tools for the analysis of the algorithms are proposed. The complexity bounds of O(√Nlog N log N/ε) for large-update methods and O(√Nlog N/ε) for smallupdate methods match the best known complexity bounds obtained for these methods. Numerical tests demonstrate the behavior of the algorithms for different results of the parameters p and q.
基金Supported by National Natural Science Foundation of China (Grant Nos.10771133 and 70871082)Shanghai Leading Academic Discipline Project (Grant No.S30104)
文摘Kernel functions play an important role in defining new search directions for primal-dual interior-point algorithm for solving linear optimization problems. In this paper we present a new kernel function which yields an algorithm with the best known complexity bound for both large- and small-update methods.