We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix...We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix triplet. As applications, we present necessary and suficient conditions for the existence of the generalsolutions to the system of matrix equations DXA = C1, EXB = C2, F XC = C3 and the matrix equation AXD + BY E + CZF = Gover F. We give the expressions of the general solutions to the system and the matrix equation when thesolvability conditions are satisfied. Moreover, we present numerical examples to illustrate the results of thispaper. We also mention the other applications of the equivalence canonical form, for instance, for the compressionof color images.展开更多
In this paper some new results of strong stability of linear forms in φ-mixing random variables are given. It is mainly proved that for a sequence of φ-mixing random variables {xn,n≥1} and two sequences of positive...In this paper some new results of strong stability of linear forms in φ-mixing random variables are given. It is mainly proved that for a sequence of φ-mixing random variables {xn,n≥1} and two sequences of positive numbers {an,n≥1} and {bn,n≥1} there exist d dn∈R,n = 1,2,..., such that bn^-1∑i=1^naixi-dn→0 a.s.under some suitable conditions. The results extend and improve the corresponding theorems for independent identically distributed random variables.展开更多
Let (?, ?) be a linear matrix problem induced from a finite dimensional algebra ∧. Then an? ×? matrix M in R(?, ?) is indecomposable if and only if the number of links in the canonical formM (∞) of M is equal t...Let (?, ?) be a linear matrix problem induced from a finite dimensional algebra ∧. Then an? ×? matrix M in R(?, ?) is indecomposable if and only if the number of links in the canonical formM (∞) of M is equal to. ?-dim? ? 1. On the other hand, the dimension of the endomorphism ring of M is equal to ?-dim? ? σ(M).展开更多
基金supported by National Natural Science Foundation of China (GrantNo. 60672160)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20093108110001)+3 种基金the Scientific Research Innovation Foundation of Shanghai Municipal Education Commission (Grant No. 09YZ13)the Netherlands Organization for Scientific Research (NWO)Singapore MoE Tier 1 Research Grant RG60/07Shanghai Leading Academic Discipline Project (Grant No. J50101)
文摘We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix triplet. As applications, we present necessary and suficient conditions for the existence of the generalsolutions to the system of matrix equations DXA = C1, EXB = C2, F XC = C3 and the matrix equation AXD + BY E + CZF = Gover F. We give the expressions of the general solutions to the system and the matrix equation when thesolvability conditions are satisfied. Moreover, we present numerical examples to illustrate the results of thispaper. We also mention the other applications of the equivalence canonical form, for instance, for the compressionof color images.
基金Supported by the National Natural Science Foundation of China(10671149)
文摘In this paper some new results of strong stability of linear forms in φ-mixing random variables are given. It is mainly proved that for a sequence of φ-mixing random variables {xn,n≥1} and two sequences of positive numbers {an,n≥1} and {bn,n≥1} there exist d dn∈R,n = 1,2,..., such that bn^-1∑i=1^naixi-dn→0 a.s.under some suitable conditions. The results extend and improve the corresponding theorems for independent identically distributed random variables.
基金the National Natural Science Foundation of China (Grant No. 19831070) and the Doctoral Foundation of Institution of Higher Education.
文摘Let (?, ?) be a linear matrix problem induced from a finite dimensional algebra ∧. Then an? ×? matrix M in R(?, ?) is indecomposable if and only if the number of links in the canonical formM (∞) of M is equal to. ?-dim? ? 1. On the other hand, the dimension of the endomorphism ring of M is equal to ?-dim? ? σ(M).