在中低密度样品中,γ射线的线衰减系数主要由γ射线能量和样品密度决定,采用MCNP(Monte Carlo N Particle Transport Code)程序模拟计算了多种γ射线能量和多种样品密度条件下的线衰减系数,对线衰减系数模拟值进行多元非线性回归,确定...在中低密度样品中,γ射线的线衰减系数主要由γ射线能量和样品密度决定,采用MCNP(Monte Carlo N Particle Transport Code)程序模拟计算了多种γ射线能量和多种样品密度条件下的线衰减系数,对线衰减系数模拟值进行多元非线性回归,确定了以γ射线能量和样品密度为因变量的线衰减系数函数及参数。实验测定了三种能量γ射线在6种不同密度样品中的线衰减系数值,并与模拟所得函数值进行比较分析。结果表明,所得函数值与实验值的相对误差均在7%以内,蒙特卡罗程序计算所得函数值与实验测量值较为吻合,所采用的函数模型准确验证了线衰减系数与γ射线能量、样品密度之间的关系特征。展开更多
将氧化铋以粉末形式添加到普通混凝土中,制备出绿色无污染且具有良好的?射线屏蔽性能的掺杂氧化铋的混凝土。相较于普通混凝土,氧化铋-混凝土的屏蔽性能及力学性能均得到改善。对比屏蔽性能实验结果及MCNP5(Monte Carlo N-Particle 5)...将氧化铋以粉末形式添加到普通混凝土中,制备出绿色无污染且具有良好的?射线屏蔽性能的掺杂氧化铋的混凝土。相较于普通混凝土,氧化铋-混凝土的屏蔽性能及力学性能均得到改善。对比屏蔽性能实验结果及MCNP5(Monte Carlo N-Particle 5)模拟结果,二者相符很好,可以用MCNP5进行后期配合比设计优化。运用田口方法对水泥量、水胶比、氧化铋比例及砂率等进行优化设计。结果表明,对氧化铋-混凝土屏蔽能力影响最大的参数是氧化铋的加入量,其次为水泥量,水胶比及砂率的影响可忽略。展开更多
In order to improve micro-CT's capability of accurate quantification of linear attenuation coefficient μ, a dual energy method was developed to correct beam hardening artifacts caused by the polychromatic spectra of...In order to improve micro-CT's capability of accurate quantification of linear attenuation coefficient μ, a dual energy method was developed to correct beam hardening artifacts caused by the polychromatic spectra of X-ray tubes. In this method, two sets of scans, taken at different energy levels, were combined to create a synthetic monochromatic image. A physical polychromatic model of μ in dual energy imaging was developed with an iterative method to solve the model for a few selected pixels. To find a high-speed and effective computing approach, the physics model was approximated by a polynomial function of the measured intensities. The method was tested on a PMMA-aluminum phantom and CaCI2 admixtures. The results show that streak and cupping artifacts are completely eliminated and that the measurement of the reconstructed attenuation coefficient μ is observed to be over 95% accurate.展开更多
The accuracy of attenuation correction in positron emission tomography scanners depends mainly on deriving the reliable 511-keV linear attenuation coefficient distribution in the scanned objects. In the PET/CT system,...The accuracy of attenuation correction in positron emission tomography scanners depends mainly on deriving the reliable 511-keV linear attenuation coefficient distribution in the scanned objects. In the PET/CT system, the linear attenu- ation distribution is usually obtained from the intensities of the CT image. However, the intensities of the CT image relate to the attenuation of photons in an energy range of 40 keV-140 keV. Before implementing PET attenuation correction, the intensities of CT images must be transformed into the PET 511-keV linear attenuation coefficients. However, the CT scan parameters can affect the effective energy of CT X-ray photons and thus affect the intensities of the CT image. Therefore, for PET/CT attenuation correction, it is crucial to determine the conversion curve with a given set of CT scan parameters and convert the CT image into a PET linear attenuation coefficient distribution. A generalized method is proposed for con- verting a CT image into a PET linear attenuation coefficient distribution. Instead of some parameter-dependent phantom calibration experiments, the conversion curve is calculated directly by employing the consistency conditions to yield the most consistent attenuation map with the measured PET data. The method is evaluated with phantom experiments and small animal experiments. In phantom studies, the estimated conversion curve fits the true attenuation coefficients accurately, and accurate PET attenuation maps are obtained by the estimated conversion curves and provide nearly the same correction results as the true attenuation map. In small animal studies, a more complicated attenuation distribution of the mouse is obtained successfully to remove the attenuation artifact and improve the PET image contrast efficiently.展开更多
The gamma quanta attenuation studies have been carried out to determine mass attenuation coefficients of 7041, 7075 and 7095 wrought aluminum alloys. The temperature dependence of linear attenuation coefficient, densi...The gamma quanta attenuation studies have been carried out to determine mass attenuation coefficients of 7041, 7075 and 7095 wrought aluminum alloys. The temperature dependence of linear attenuation coefficient, density and thermal expansion of these wrought aluminum alloys in the temperature range 300 K - 850 K have been reported. The measurements were done by using a gamma ray densitometer designed and fabricated in our laboratory. The data on variation of density and linear thermal expansion with temperature have been represented by linear equations. Volume thermal expansion coefficients have been reported.展开更多
It is difficult to develop image reconstruction algorithms for tomographic gamma scanning based on drummed radioactive residues or wastes.In this paper,a novel reconstruction algorithm of transmission image for tomogr...It is difficult to develop image reconstruction algorithms for tomographic gamma scanning based on drummed radioactive residues or wastes.In this paper,a novel reconstruction algorithm of transmission image for tomographic gamma scanning is proposed.It is based on the conventional transmission equation and equivalent gamma-ray track length modified by a Monte Carlo method.The algorithm is implemented by simulating the samples on the established platform.For the verification experiments of the algorithm,several cubic voxel samples were designed and manufactured.Experimental tests were conducted.The tomographic gamma scanning of transmission images is compared with the linear attenuation coefficients by the simulated values and experimental data with the algorithm and the reference values.The results show that the absolute relative errors of the reconstructed images are less than 5%.展开更多
文摘在中低密度样品中,γ射线的线衰减系数主要由γ射线能量和样品密度决定,采用MCNP(Monte Carlo N Particle Transport Code)程序模拟计算了多种γ射线能量和多种样品密度条件下的线衰减系数,对线衰减系数模拟值进行多元非线性回归,确定了以γ射线能量和样品密度为因变量的线衰减系数函数及参数。实验测定了三种能量γ射线在6种不同密度样品中的线衰减系数值,并与模拟所得函数值进行比较分析。结果表明,所得函数值与实验值的相对误差均在7%以内,蒙特卡罗程序计算所得函数值与实验测量值较为吻合,所采用的函数模型准确验证了线衰减系数与γ射线能量、样品密度之间的关系特征。
文摘将氧化铋以粉末形式添加到普通混凝土中,制备出绿色无污染且具有良好的?射线屏蔽性能的掺杂氧化铋的混凝土。相较于普通混凝土,氧化铋-混凝土的屏蔽性能及力学性能均得到改善。对比屏蔽性能实验结果及MCNP5(Monte Carlo N-Particle 5)模拟结果,二者相符很好,可以用MCNP5进行后期配合比设计优化。运用田口方法对水泥量、水胶比、氧化铋比例及砂率等进行优化设计。结果表明,对氧化铋-混凝土屏蔽能力影响最大的参数是氧化铋的加入量,其次为水泥量,水胶比及砂率的影响可忽略。
基金Supported by the National Key Basic Research and Development (973) Program of China (No. 2006CB705700)
文摘In order to improve micro-CT's capability of accurate quantification of linear attenuation coefficient μ, a dual energy method was developed to correct beam hardening artifacts caused by the polychromatic spectra of X-ray tubes. In this method, two sets of scans, taken at different energy levels, were combined to create a synthetic monochromatic image. A physical polychromatic model of μ in dual energy imaging was developed with an iterative method to solve the model for a few selected pixels. To find a high-speed and effective computing approach, the physics model was approximated by a polynomial function of the measured intensities. The method was tested on a PMMA-aluminum phantom and CaCI2 admixtures. The results show that streak and cupping artifacts are completely eliminated and that the measurement of the reconstructed attenuation coefficient μ is observed to be over 95% accurate.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.81101070 and 81101175)
文摘The accuracy of attenuation correction in positron emission tomography scanners depends mainly on deriving the reliable 511-keV linear attenuation coefficient distribution in the scanned objects. In the PET/CT system, the linear attenu- ation distribution is usually obtained from the intensities of the CT image. However, the intensities of the CT image relate to the attenuation of photons in an energy range of 40 keV-140 keV. Before implementing PET attenuation correction, the intensities of CT images must be transformed into the PET 511-keV linear attenuation coefficients. However, the CT scan parameters can affect the effective energy of CT X-ray photons and thus affect the intensities of the CT image. Therefore, for PET/CT attenuation correction, it is crucial to determine the conversion curve with a given set of CT scan parameters and convert the CT image into a PET linear attenuation coefficient distribution. A generalized method is proposed for con- verting a CT image into a PET linear attenuation coefficient distribution. Instead of some parameter-dependent phantom calibration experiments, the conversion curve is calculated directly by employing the consistency conditions to yield the most consistent attenuation map with the measured PET data. The method is evaluated with phantom experiments and small animal experiments. In phantom studies, the estimated conversion curve fits the true attenuation coefficients accurately, and accurate PET attenuation maps are obtained by the estimated conversion curves and provide nearly the same correction results as the true attenuation map. In small animal studies, a more complicated attenuation distribution of the mouse is obtained successfully to remove the attenuation artifact and improve the PET image contrast efficiently.
文摘The gamma quanta attenuation studies have been carried out to determine mass attenuation coefficients of 7041, 7075 and 7095 wrought aluminum alloys. The temperature dependence of linear attenuation coefficient, density and thermal expansion of these wrought aluminum alloys in the temperature range 300 K - 850 K have been reported. The measurements were done by using a gamma ray densitometer designed and fabricated in our laboratory. The data on variation of density and linear thermal expansion with temperature have been represented by linear equations. Volume thermal expansion coefficients have been reported.
基金Supported by the Foundation for Returned Oversea Chinese Scholars(No.33)
文摘It is difficult to develop image reconstruction algorithms for tomographic gamma scanning based on drummed radioactive residues or wastes.In this paper,a novel reconstruction algorithm of transmission image for tomographic gamma scanning is proposed.It is based on the conventional transmission equation and equivalent gamma-ray track length modified by a Monte Carlo method.The algorithm is implemented by simulating the samples on the established platform.For the verification experiments of the algorithm,several cubic voxel samples were designed and manufactured.Experimental tests were conducted.The tomographic gamma scanning of transmission images is compared with the linear attenuation coefficients by the simulated values and experimental data with the algorithm and the reference values.The results show that the absolute relative errors of the reconstructed images are less than 5%.