We develop a fast microwave-induced thermoacoustic tomography system based on a 320-element phase-controlled focus linear transducer array. A 1.2-GHz microwave generator transmits microwave with a pulse width of 0.5 ...We develop a fast microwave-induced thermoacoustic tomography system based on a 320-element phase-controlled focus linear transducer array. A 1.2-GHz microwave generator transmits microwave with a pulse width of 0.5 μs and an incident energy density of 0. 45 mJ/cm^2, and the microwave energy is delivered by a rectangular waveguide with a cross section of (80.01 ± 0.02) × 10^-4 m^2. Compared to single transducer collection, the system with the multi-element linear transducer array can eliminate the mechanical rotation of the transducer, hence can effectively reduce the image blurring and improve the image resolution. Using a phase-controlled focus technique to collect thermoacoustic signals, the data need not be averaged because of a high signal-to-noise ratio, resulting in a total data acquisition time of less than 5 s. The system thus provides a rapid and reliable approach to thermoacoustic imaging, which can potentially be developed as a powerful diagnostic tool for early-stage breast caners.展开更多
As a hybrid imaging modality that combines optical excitation with acoustic detection,photoacoustic tomography(PAT)has become one of the fastest growing biomedical imaging modalities.Among various types of transducer ...As a hybrid imaging modality that combines optical excitation with acoustic detection,photoacoustic tomography(PAT)has become one of the fastest growing biomedical imaging modalities.Among various types of transducer arrays used in a PAT system conguration,the linear array is the most commonly utilized due to its convenience and low-cost.Although linear array-based PAT has been quickly developed within the recent decade,there are still two major challenges that impair the overall performance of the PAT imaging system.Therst challenge is that the three-dimensional(3D)imaging capability of a linear array is limited due to its poor elevational resolution.The other challenge is that the geometrical shape of the linear array constrains light illumination.To date,substantial e®orts have been made to address the aforementioned challenges.This review will present current technologies for improving the elevation resolution and light delivery of linear array-based PAT systems.展开更多
Photoacoustic tomography(PAT) has the unique capability of visualizing optical absorption inside several centimeters-deep biological tissue with a high spatial resolution. However, single linear-array transducer-bas...Photoacoustic tomography(PAT) has the unique capability of visualizing optical absorption inside several centimeters-deep biological tissue with a high spatial resolution. However, single linear-array transducer-based PAT suffers from the limited-view challenge, and thus the synthetic aperture configuration is designed that still requires multichannel data acquisition hardware. Herein, a feasible synthetic aperture PAT based on compressed sensing reconstruction is proposed. Both the simulation and experimental results tested the theoretical model and validated that this approach can improve the image resolution and address the limited-view problem while preserving the target information with a fewer number of measurements.展开更多
A novel automatic ultrasonic system used for the inspection of pipeline girth welds is developed, in which a linear phased array transducer using electronic scan is adopted. Optimal array parameters are determined bas...A novel automatic ultrasonic system used for the inspection of pipeline girth welds is developed, in which a linear phased array transducer using electronic scan is adopted. Optimal array parameters are determined based on a mathematical model of acoustic field for linear phased army derived from Huygens' principle. The testing method and the system structure are introduced. The experimental results show that the phased array transducer system has the same detectability as that of conventional ultrasonic transducer system, but the system architecture can be simplified greatly, and the testing flexibility and the testing speed can be improved greatly.展开更多
A simple algorithm using an impulse response for a rectangular piston element is discussed. The impulse response of linear phased array is obtained hv stumming the impulse responses of rectangular piston elements with...A simple algorithm using an impulse response for a rectangular piston element is discussed. The impulse response of linear phased array is obtained hv stumming the impulse responses of rectangular piston elements with different delay times. The output response of the linear wide-band array is equal to the convolution of impulse response functions with wide-band pulse exeiting signal. Sound field distributions and impulse responses of three kinds of transducers are compared. The results can be used to optimize the parameters of the linear phased array transducers used in uhrasonie imaging in nondestructive testing (NDT).展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 60378043 and 30470494, and the Natural Science Foundation of Guangdong Province (015012 04010394 2004B10401011).
文摘We develop a fast microwave-induced thermoacoustic tomography system based on a 320-element phase-controlled focus linear transducer array. A 1.2-GHz microwave generator transmits microwave with a pulse width of 0.5 μs and an incident energy density of 0. 45 mJ/cm^2, and the microwave energy is delivered by a rectangular waveguide with a cross section of (80.01 ± 0.02) × 10^-4 m^2. Compared to single transducer collection, the system with the multi-element linear transducer array can eliminate the mechanical rotation of the transducer, hence can effectively reduce the image blurring and improve the image resolution. Using a phase-controlled focus technique to collect thermoacoustic signals, the data need not be averaged because of a high signal-to-noise ratio, resulting in a total data acquisition time of less than 5 s. The system thus provides a rapid and reliable approach to thermoacoustic imaging, which can potentially be developed as a powerful diagnostic tool for early-stage breast caners.
基金supported in part by the Career Catalyst Research Grant from the Susan G.Komen Foundation(No.CCR17481211).
文摘As a hybrid imaging modality that combines optical excitation with acoustic detection,photoacoustic tomography(PAT)has become one of the fastest growing biomedical imaging modalities.Among various types of transducer arrays used in a PAT system conguration,the linear array is the most commonly utilized due to its convenience and low-cost.Although linear array-based PAT has been quickly developed within the recent decade,there are still two major challenges that impair the overall performance of the PAT imaging system.Therst challenge is that the three-dimensional(3D)imaging capability of a linear array is limited due to its poor elevational resolution.The other challenge is that the geometrical shape of the linear array constrains light illumination.To date,substantial e®orts have been made to address the aforementioned challenges.This review will present current technologies for improving the elevation resolution and light delivery of linear array-based PAT systems.
基金partially supported by the National Natural Science Foundation of China(Nos.61371045 and 11574064)the Shenzhen Science & Technology Program,China(No.JCYJ20160429115309834)the Science and Technology Development Plan Project of Shandong Province,China(Nos.2015GGX103016 and 2016GGX103032)
文摘Photoacoustic tomography(PAT) has the unique capability of visualizing optical absorption inside several centimeters-deep biological tissue with a high spatial resolution. However, single linear-array transducer-based PAT suffers from the limited-view challenge, and thus the synthetic aperture configuration is designed that still requires multichannel data acquisition hardware. Herein, a feasible synthetic aperture PAT based on compressed sensing reconstruction is proposed. Both the simulation and experimental results tested the theoretical model and validated that this approach can improve the image resolution and address the limited-view problem while preserving the target information with a fewer number of measurements.
文摘A novel automatic ultrasonic system used for the inspection of pipeline girth welds is developed, in which a linear phased array transducer using electronic scan is adopted. Optimal array parameters are determined based on a mathematical model of acoustic field for linear phased army derived from Huygens' principle. The testing method and the system structure are introduced. The experimental results show that the phased array transducer system has the same detectability as that of conventional ultrasonic transducer system, but the system architecture can be simplified greatly, and the testing flexibility and the testing speed can be improved greatly.
基金Sponsored by the Foundation of High Technology Research and Development Program of China (Grant No. 2001AA616170).
文摘A simple algorithm using an impulse response for a rectangular piston element is discussed. The impulse response of linear phased array is obtained hv stumming the impulse responses of rectangular piston elements with different delay times. The output response of the linear wide-band array is equal to the convolution of impulse response functions with wide-band pulse exeiting signal. Sound field distributions and impulse responses of three kinds of transducers are compared. The results can be used to optimize the parameters of the linear phased array transducers used in uhrasonie imaging in nondestructive testing (NDT).